These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34497922)
1. Experimental Comparative Investigation of Hot Solvent/Steam-Assisted Gravity Drainage in Oil Sand Reservoirs. Bai Y; Liu J; Liu S; Xia Z; Chen Y; Liang G; Shen Y ACS Omega; 2021 Aug; 6(34):22333-22343. PubMed ID: 34497922 [TBL] [Abstract][Full Text] [Related]
2. Visualization Experimental Study on Well Spacing Optimization of SAGD with a Combination of Vertical and Horizontal Wells. Tao L; Xu L; Yuan X; Shi W; Zhang N; Li S; Si S; Ding Y; Bai J; Zhu Q; Du H ACS Omega; 2021 Nov; 6(44):30050-30060. PubMed ID: 34778676 [TBL] [Abstract][Full Text] [Related]
3. Bitumen Recovery Performance of SAGD and Butane- and Hexane-Aided SAGD in the Presence of Shale Barriers. Kumar A; Hassanzadeh H ACS Omega; 2022 Jun; 7(23):20280-20290. PubMed ID: 35721955 [TBL] [Abstract][Full Text] [Related]
4. Multi-stage development process and model of steam chamber for SAGD production in a heavy oil reservoir with an interlayer. Nie RS; Jiang Q; Wang Y; Liu J; Zhan J; Zhang L; Li Y; Shen G; Xu M Sci Rep; 2024 Apr; 14(1):9959. PubMed ID: 38693281 [TBL] [Abstract][Full Text] [Related]
5. A multiple lines of evidence approach for the ecological risk assessment of an accidental bitumen release from a steam assisted gravity drainage (SAGD) well in the Athabasca oil sands region. Berger RG; Aslund MW; Sanders G; Charlebois M; Knopper LD; Bresee KE Sci Total Environ; 2016 Jan; 542(Pt A):495-504. PubMed ID: 26520273 [TBL] [Abstract][Full Text] [Related]
6. Convection beyond the Steam Chamber Interface in the Steam-Assisted-Gravity-Drainage Process. Wang F; Yang Z; Wang X; Lin R ACS Omega; 2020 Dec; 5(47):30478-30487. PubMed ID: 33283096 [TBL] [Abstract][Full Text] [Related]
7. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. de Haas TW; Fadaei H; Guerrero U; Sinton D Lab Chip; 2013 Oct; 13(19):3832-9. PubMed ID: 23835782 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms and Influence Factors of Downhole Electrical Heating-Assisted Steam-Assisted Gravity Drainage Production. Wu Y; Lv B; Liu T; Wang C; Jiang Y; Li S ACS Omega; 2022 Sep; 7(36):32401-32409. PubMed ID: 36120080 [TBL] [Abstract][Full Text] [Related]
9. Challenges and future of chemical assisted heavy oil recovery processes. Ahmadi M; Chen Z Adv Colloid Interface Sci; 2020 Jan; 275():102081. PubMed ID: 31830684 [TBL] [Abstract][Full Text] [Related]
10. Molecular Dynamics Investigation of Wettability Alteration of Quartz Surface under Thermal Recovery Processes. Ahmadi M; Chen Z Molecules; 2023 Jan; 28(3):. PubMed ID: 36770829 [TBL] [Abstract][Full Text] [Related]
12. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions. Orellana A; Laurenzi IJ; MacLean HL; Bergerson JA Environ Sci Technol; 2018 Feb; 52(3):947-954. PubMed ID: 29232120 [TBL] [Abstract][Full Text] [Related]
13. Measurements and PR EoS Modeling of Thermophysical Properties at Vapor-Liquid Equilibrium Conditions for Natural Gas Condensate/Live Bitumen Mixtures. Bamzad S; Abdi M; Kheirollahi S; Mohammadi M; Dahbag MB; Hassanzadeh H ACS Omega; 2024 May; 9(21):22590-22606. PubMed ID: 38826562 [TBL] [Abstract][Full Text] [Related]
14. Machine-Learning Approach for Forecasting Steam-Assisted Gravity-Drainage Performance in the Presence of Noncondensable Gases. Canbolat S; Artun E ACS Omega; 2022 Jun; 7(24):21119-21130. PubMed ID: 35755334 [TBL] [Abstract][Full Text] [Related]
15. Spotlight onto surfactant-steam-bitumen interfacial behavior via molecular dynamics simulation. Ahmadi M; Chen Z Sci Rep; 2021 Oct; 11(1):19660. PubMed ID: 34608190 [TBL] [Abstract][Full Text] [Related]
16. A steam injection distribution optimization method for SAGD oil field using LSTM and dynamic programming. Yang C; Wang X ISA Trans; 2021 Apr; 110():198-212. PubMed ID: 33077171 [TBL] [Abstract][Full Text] [Related]
17. A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. Douglas LD; Rivera-Gonzalez N; Cool N; Bajpayee A; Udayakantha M; Liu GW; Anita ; Banerjee S ACS Omega; 2022 Jan; 7(2):1547-1574. PubMed ID: 35071852 [TBL] [Abstract][Full Text] [Related]
18. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application. Charpentier AD; Kofoworola O; Bergerson JA; MacLean HL Environ Sci Technol; 2011 Nov; 45(21):9393-404. PubMed ID: 21919460 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive review of enhanced oil recovery strategies for heavy oil and bitumen reservoirs in various countries: Global perspectives, challenges, and solutions. Seidy-Esfahlan M; Tabatabaei-Nezhad SA; Khodapanah E Heliyon; 2024 Sep; 10(18):e37826. PubMed ID: 39328570 [TBL] [Abstract][Full Text] [Related]
20. Use of two vertical injectors in place of a horizontal injector to improve the efficiency and stability of THAI in situ combustion process for producing heavy oils. Ado MR J Pet Explor Prod Technol; 2022; 12(2):421-435. PubMed ID: 34745810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]