These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3449803)

  • 1. Is force production in the hypoxic myocardium dependent on cytosolic inorganic phosphate?
    Kammermeier H; Roeb E
    Pflugers Arch; 1987 Dec; 410(6):671-3. PubMed ID: 3449803
    [No Abstract]   [Full Text] [Related]  

  • 2. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H
    Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between myocardial contractile force and cytosolic inorganic phosphate during early ischemia.
    He MX; Wang S; Downey HF
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1333-41. PubMed ID: 9087609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of changes in myofilament responsiveness to Ca2+ during hypoxia and reoxygenation in myocardium.
    Hajjar RJ; Gwathmey JK
    Am J Physiol; 1990 Sep; 259(3 Pt 2):H784-95. PubMed ID: 2204278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?
    Kammermeier H; Schmidt P; Jüngling E
    J Mol Cell Cardiol; 1982 May; 14(5):267-77. PubMed ID: 7131563
    [No Abstract]   [Full Text] [Related]  

  • 8. Impaired posthypoxic relaxation in single cardiac myocytes: role of intracellular pH and inorganic phosphate.
    Bertoni AG; Adrian S; Mankad S; Silverman HS
    Cardiovasc Res; 1993 Nov; 27(11):1983-90. PubMed ID: 8287407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM; Taylor DJ; Radda GK
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial effects of befunolol on post-hypoxic recovery of cardiac contractility and myocardial metabolism.
    Maruyama Y; Tanonaka K; Niwa T; Takeo S
    Arzneimittelforschung; 1992 Dec; 42(12):1423-9. PubMed ID: 1363193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of palmitate on hypoxic myocardial metabolism and contractility.
    Apstein CS; Gmeiner R; Brachfeld N
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():136-46. PubMed ID: 4681458
    [No Abstract]   [Full Text] [Related]  

  • 12. [Adaptation and disadaptation of the myocardium of rats trained to hypoxia].
    Alaverdian AM; Nuzhnyĭ VP; Klibaner MI; Beskrovnova NN
    Fiziol Zh SSSR Im I M Sechenova; 1978 Apr; 64(4):483-90. PubMed ID: 658517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing actions of calcium and magnesium ions on the metabolic effects of epinephrine in rat heart.
    Levin RM; Haugaard N; Hess ME
    Biochem Pharmacol; 1976 Sep; 25(17):1963-9. PubMed ID: 985534
    [No Abstract]   [Full Text] [Related]  

  • 14. [The effect of hypoxic preconditioning on myocardium energy metabolism].
    Wu CL; Lin LZ; Lu Z; Huang YR; Zhuang JG; Zhou ZN
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb; 17(1):43-6. PubMed ID: 21171441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hypoxia on mechanical properties of isolated rat heart. Comparison of the effects of hypoxic and histotoxic hypoxia.
    Rubányi G; Kovách AG
    Acta Physiol Acad Sci Hung; 1980; 55(3):215-25. PubMed ID: 7468246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of propranolo, itramin tosylate and dipyridamole on myocardial phosphate metabolism in anoxic perfused rat hearts.
    Takenaka F; Umeda T
    Arch Int Pharmacodyn Ther; 1976 Jul; 222(1):45-54. PubMed ID: 10860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine formation and energy metabolism: a 31P-NMR study in isolated rat heart.
    Headrick JP; Willis RJ
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H617-24. PubMed ID: 2316676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics and mitochondrial energy metabolism in right heart hypertrophy after acute hypoxic stress.
    Thürich T; Bereiter-Hahn J; Schneider M; Zimmer G
    Arzneimittelforschung; 1999 Mar; 49(3):212-20. PubMed ID: 10219464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic phosphate and coronary perfusion pressure mediate contractile dysfunction during mild ischemia.
    Miyamae M; Camacho SA; Rooney WD; Modin G; Zhou HZ; Weiner MW; Figueredo VM
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H566-72. PubMed ID: 9277470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.