BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34498135)

  • 1. Maximal strength training-induced increase in efferent neural drive is not reflected in relative protein expression of SERCA.
    Tøien T; Haglo H; Nyberg SK; Rao SV; Stunes AK; Mosti MP; Wang E
    Eur J Appl Physiol; 2021 Dec; 121(12):3421-3430. PubMed ID: 34498135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal strength training: the impact of eccentric overload.
    Tøien T; Pedersen Haglo H; Unhjem R; Hoff J; Wang E
    J Neurophysiol; 2018 Dec; 120(6):2868-2876. PubMed ID: 30332319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External Resistance Is Imperative for Training-Induced Efferent Neural Drive Enhancement in Older Adults.
    Unhjem R; Tøien T; Kvellestad ACG; Øren TS; Wang E
    J Gerontol A Biol Sci Med Sci; 2021 Jan; 76(2):224-232. PubMed ID: 32614394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Plasticity with Age: Unilateral Maximal Strength Training Augments Efferent Neural Drive to the Contralateral Limb in Older Adults.
    Tøien T; Unhjem R; Øren TS; Kvellestad ACG; Hoff J; Wang E
    J Gerontol A Biol Sci Med Sci; 2018 Apr; 73(5):596-602. PubMed ID: 29126270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal strength training in patients with Parkinson's disease: impact on efferent neural drive, force-generating capacity, and functional performance.
    Helgerud J; Thomsen SN; Hoff J; Strandbråten A; Leivseth G; Unhjem R; Wang E
    J Appl Physiol (1985); 2020 Oct; 129(4):683-690. PubMed ID: 32790593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced neural drive after maximal strength training in multiple sclerosis patients.
    Fimland MS; Helgerud J; Gruber M; Leivseth G; Hoff J
    Eur J Appl Physiol; 2010 Sep; 110(2):435-43. PubMed ID: 20512584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifelong strength training mitigates the age-related decline in efferent drive.
    Unhjem R; Nygård M; van den Hoven LT; Sidhu SK; Hoff J; Wang E
    J Appl Physiol (1985); 2016 Aug; 121(2):415-23. PubMed ID: 27339181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strength training-induced responses in older adults: attenuation of descending neural drive with age.
    Unhjem R; Lundestad R; Fimland MS; Mosti MP; Wang E
    Age (Dordr); 2015 Jun; 37(3):9784. PubMed ID: 25940749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximal strength training improves musculoskeletal health in amphetamine users in clinical treatment.
    Nygård M; Mosti MP; Brose L; Flemmen G; Stunes AK; Sørskår-Venæs A; Heggelund J; Wang E
    Osteoporos Int; 2018 Oct; 29(10):2289-2298. PubMed ID: 29978257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural drive preservation after detraining following neuromuscular electrical stimulation training.
    Gondin J; Duclay J; Martin A
    Neurosci Lett; 2006 Dec; 409(3):210-4. PubMed ID: 17027149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased rate of force development and neural drive of human skeletal muscle following resistance training.
    Aagaard P; Simonsen EB; Andersen JL; Magnusson P; Dyhre-Poulsen P
    J Appl Physiol (1985); 2002 Oct; 93(4):1318-26. PubMed ID: 12235031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training.
    Vitry F; Martin A; Papaiordanidou M
    J Appl Physiol (1985); 2019 Nov; 127(5):1469-1477. PubMed ID: 31545155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximal strength training improves work economy, rate of force development and maximal strength more than conventional strength training.
    Heggelund J; Fimland MS; Helgerud J; Hoff J
    Eur J Appl Physiol; 2013 Jun; 113(6):1565-73. PubMed ID: 23307029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of voluntary contraction intensity on the H-reflex and V-wave responses.
    Pensini M; Martin A
    Neurosci Lett; 2004 Sep; 367(3):369-74. PubMed ID: 15337268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isometric parameters in the monitoring of maximal strength, power, and hypertrophic resistance-training.
    Peltonen H; Walker S; Lähitie A; Häkkinen K; Avela J
    Appl Physiol Nutr Metab; 2018 Feb; 43(2):145-153. PubMed ID: 29017022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength versus endurance trained master athletes: Contrasting neurophysiological adaptations.
    Tøien T; Unhjem R; Berg OK; Aagaard P; Wang E
    Exp Gerontol; 2023 Jan; 171():112038. PubMed ID: 36442699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural adaptations to submaximal isokinetic eccentric strength training.
    Barrué-Belou S; Amarantini D; Marque P; Duclay J
    Eur J Appl Physiol; 2016 May; 116(5):1021-30. PubMed ID: 27030127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term resistance training with instability reduces impairment in V wave and H reflex in individuals with Parkinson's disease.
    Silva-Batista C; Lira JLO; David FJ; Corcos DM; Mattos ECT; Boari Coelho D; de Lima-Pardini AC; Torriani-Pasin C; de Freitas TB; Ugrinowitsch C
    J Appl Physiol (1985); 2019 Jul; 127(1):89-97. PubMed ID: 31306047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early and late rate of force development: differential adaptive responses to resistance training?
    Andersen LL; Andersen JL; Zebis MK; Aagaard P
    Scand J Med Sci Sports; 2010 Feb; 20(1):e162-9. PubMed ID: 19793220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations.
    Del Vecchio A; Casolo A; Dideriksen JL; Aagaard P; Felici F; Falla D; Farina D
    J Appl Physiol (1985); 2022 Jan; 132(1):84-94. PubMed ID: 34792405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.