These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34498229)

  • 21. Does the Effort of Processing Potential Incentives Influence the Adaption of Context Updating in Older Adults?
    Schmitt H; Kray J; Ferdinand NK
    Front Psychol; 2017; 8():1969. PubMed ID: 29170649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monkey Prefrontal Neurons Reflect Logical Operations for Cognitive Control in a Variant of the AX Continuous Performance Task (AX-CPT).
    Blackman RK; Crowe DA; DeNicola AL; Sakellaridi S; MacDonald AW; Chafee MV
    J Neurosci; 2016 Apr; 36(14):4067-79. PubMed ID: 27053213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control.
    Raud L; Huster RJ
    Brain Topogr; 2017 Jul; 30(4):486-501. PubMed ID: 28456867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Connection of social anxiety to impaired pattern of cognitive control and underlying motivational deficiencies: Evidence from event-related potentials.
    Zhao R; Xu C; Shi G; Li C; Shao S; Shangguan F; Cui L
    Psychophysiology; 2024 Sep; 61(9):e14598. PubMed ID: 38691392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of the high-approach versus low-approach motivational positive affect on the processing stage of cognitive control: an event-related potential study.
    Li Y; Zhang Q; Liu F; Cui L
    Neuroreport; 2018 Jan; 29(1):41-47. PubMed ID: 29112677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocular signatures of proactive versus reactive cognitive control in young adults.
    Mäki-Marttunen V; Hagen T; Aminihajibashi S; Foldal M; Stavrinou M; Halvorsen JH; Laeng B; Espeseth T
    Cogn Affect Behav Neurosci; 2018 Oct; 18(5):1049-1063. PubMed ID: 29992484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired cognitive control in patients with brain tumors.
    Tarantino V; Visalli A; Facchini S; Rossato C; Bertoldo A; Silvestri E; Cecchin D; Capizzi M; Anglani M; Baro V; Denaro L; Della Puppa A; D'Avella D; Corbetta M; Vallesi A
    Neuropsychologia; 2022 May; 169():108187. PubMed ID: 35218790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An electrophysiological study of response conflict processing across the lifespan: assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression.
    Hämmerer D; Li SC; Müller V; Lindenberger U
    Neuropsychologia; 2010 Sep; 48(11):3305-16. PubMed ID: 20638396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissociation of Proactive and Reactive Cognitive Control in Individuals with Schizotypy: An Event-Related Potential Study.
    Jia LX; Qin XJ; Cui JF; Shi HS; Ye JY; Yang TX; Wang Y; Chan RCK
    J Int Neuropsychol Soc; 2021 Nov; 27(10):981-991. PubMed ID: 33509315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frontoparietal theta oscillations during proactive control are associated with goal-updating and reduced behavioral variability.
    Cooper PS; Wong ASW; McKewen M; Michie PT; Karayanidis F
    Biol Psychol; 2017 Oct; 129():253-264. PubMed ID: 28923361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral and neurophysiological study of attentional and inhibitory processes in ADHD-combined and control children.
    Baijot S; Deconinck N; Slama H; Massat I; Colin C
    Acta Neurol Belg; 2013 Dec; 113(4):477-85. PubMed ID: 23797351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cognitive control in context: working memory capacity and proactive control.
    Redick TS
    Acta Psychol (Amst); 2014 Jan; 145():1-9. PubMed ID: 24240136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anticipating conflict facilitates controlled stimulus-response selection.
    Correa A; Rao A; Nobre AC
    J Cogn Neurosci; 2009 Aug; 21(8):1461-72. PubMed ID: 18823248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expectancy-related modulations of neural oscillations in continuous performance tasks.
    Bickel S; Dias EC; Epstein ML; Javitt DC
    Neuroimage; 2012 Sep; 62(3):1867-76. PubMed ID: 22691613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Event structure and cognitive control.
    Reimer JF; Radvansky GA; Lorsbach TC; Armendarez JJ
    J Exp Psychol Learn Mem Cogn; 2015 Sep; 41(5):1374-87. PubMed ID: 25603168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.
    Wang C; Ding M; Kluger BM
    PLoS One; 2015; 10(7):e0134686. PubMed ID: 26230662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous Fluctuations in the Flexible Control of Covert Attention.
    Sali AW; Courtney SM; Yantis S
    J Neurosci; 2016 Jan; 36(2):445-54. PubMed ID: 26758836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal Dynamics of Proactive and Reactive Motor Inhibition.
    Liebrand M; Pein I; Tzvi E; Krämer UM
    Front Hum Neurosci; 2017; 11():204. PubMed ID: 28496405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Manipulation of Guided Attention to the Shoulder Movement Task in Clinical Dohsa-hou Induces Shifts in the Reactive Mode and Indicates Flexible Cognitive Control Performance.
    Fujikawa T; Kabir RS; Haramaki Y
    Front Psychol; 2022; 13():785385. PubMed ID: 35465484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.