These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34498229)

  • 41. Early sensory contributions to contextual encoding deficits in schizophrenia.
    Dias EC; Butler PD; Hoptman MJ; Javitt DC
    Arch Gen Psychiatry; 2011 Jul; 68(7):654-64. PubMed ID: 21383251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of monetary incentives on context processing in younger and older adults: an event-related potential study.
    Schmitt H; Ferdinand NK; Kray J
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):416-34. PubMed ID: 25665666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurophysiological Measures of Proactive and Reactive Control in Negative Template Use.
    Chidharom M; Carlisle NB
    J Cogn Neurosci; 2023 Jul; 35(7):1063-1074. PubMed ID: 37052508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating anticipatory processes during sequentially changing reward prospect: An ERP study.
    Fröber K; Jurczyk V; Mendl J; Dreisbach G
    Brain Cogn; 2021 Dec; 155():105815. PubMed ID: 34731759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ERPs dissociate proactive and reactive control: evidence from a task-switching paradigm with informative and uninformative cues.
    Czernochowski D
    Cogn Affect Behav Neurosci; 2015 Mar; 15(1):117-31. PubMed ID: 24925001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.
    Mento G
    Neuropsychologia; 2017 Dec; 107():31-40. PubMed ID: 29109036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Can neurophysiological markers of anticipation and attention predict ADHD severity and neurofeedback outcomes?
    Aggensteiner PM; Albrecht B; Strehl U; Wörz S; Ruckes C; Freitag CM; Rothenberger A; Gevensleben H; Millenet S; Hohmann S; Banaschewski T; Legenbauer T; Holtmann M; Brandeis D
    Biol Psychol; 2021 Oct; 165():108169. PubMed ID: 34416347
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Event Segmentation Enhances Older Adults' Reactive Cognitive Control Bias.
    Skrotzki C; Stone C; Kandasamy K; Yang L
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2024; 31(1):187-201. PubMed ID: 36242587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ERP evidence of cognitive strategy change in motivational conditions with varying level of difficulty.
    Vuillier L; Whitebread D; Szucs D
    Neuropsychologia; 2015 Apr; 70():126-33. PubMed ID: 25708173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proactive control in early and middle childhood: An ERP study.
    Elke S; Wiebe SA
    Dev Cogn Neurosci; 2017 Aug; 26():28-38. PubMed ID: 28436833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cognitive Control in Young and Older Adults: Does Mood Matter?
    Truong L; Kandasamy K; Yang L
    Brain Sci; 2021 Dec; 12(1):. PubMed ID: 35053793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavioral inhibition and dual mechanisms of anxiety risk: Disentangling neural correlates of proactive and reactive control.
    Valadez EA; Troller-Renfree SV; Buzzell GA; Henderson HA; Chronis-Tuscano A; Pine DS; Fox NA
    JCPP Adv; 2021 Jul; 1(2):. PubMed ID: 34595482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
    van den Berg B; Krebs RM; Lorist MM; Woldorff MG
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):561-77. PubMed ID: 24820263
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Associations between physical activity and proactive control and the modulating role of working memory.
    Ren T; Ye X; Li Z; Li Q; Zhang X; Dou W; Jia X; Li BM; Wang C
    Psychol Sport Exerc; 2023 May; 66():102374. PubMed ID: 37665846
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry.
    Chiew KS; Braver TS
    Front Psychol; 2013; 4():15. PubMed ID: 23372557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control strategy under pressure situations: performance pressure conditionally enhances proactive control.
    Liu Z; Tang R
    Psychol Res; 2024 Jun; 88(4):1115-1126. PubMed ID: 38459973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition from reactive control to proactive control across conflict adaptation: An sLORETA study.
    Suzuki K; Shinoda H
    Brain Cogn; 2015 Nov; 100():7-14. PubMed ID: 26432378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blink-related EEG activity measures cognitive load during proactive and reactive driving.
    Alyan E; Arnau S; Reiser JE; Getzmann S; Karthaus M; Wascher E
    Sci Rep; 2023 Nov; 13(1):19379. PubMed ID: 37938617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.