BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34498424)

  • 21. A combined hypoxia and immune gene signature for predicting survival and risk stratification in triple-negative breast cancer.
    Yang X; Weng X; Yang Y; Zhang M; Xiu Y; Peng W; Liao X; Xu M; Sun Y; Liu X
    Aging (Albany NY); 2021 Aug; 13(15):19486-19509. PubMed ID: 34341184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiles of immune infiltration in lung adenocarcinoma and their clinical significant: A gene-expression-based retrospective study.
    Chen G; Dong Z; Wu D; Chen Y
    J Cell Biochem; 2020 Nov; 121(11):4431-4439. PubMed ID: 32003059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of tumor mutation burden and immune infiltrates for the prognosis of lung adenocarcinoma.
    Zhao Z; He B; Cai Q; Zhang P; Peng X; Zhang Y; Xie H; Wang X
    Int Immunopharmacol; 2021 Sep; 98():107807. PubMed ID: 34175739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 10-gene prognostic methylation signature for stage I-III cervical cancer.
    Cai S; Yu X; Gu Z; Yang Q; Wen B; Sheng J; Guan R
    Arch Gynecol Obstet; 2020 May; 301(5):1275-1287. PubMed ID: 32274635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Validation of a Novel Ferroptosis-Related Gene Signature for Predicting Prognosis and the Immune Microenvironment in Gastric Cancer.
    Wang F; Chen C; Chen WP; Li ZL; Cheng H
    Biomed Res Int; 2021; 2021():6014202. PubMed ID: 34708125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 10-gene prognostic signature points to LIMCH1 and HLA-DQB1 as important players in aggressive cervical cancer disease.
    Halle MK; Sødal M; Forsse D; Engerud H; Woie K; Lura NG; Wagner-Larsen KS; Trovik J; Bertelsen BI; Haldorsen IS; Ojesina AI; Krakstad C
    Br J Cancer; 2021 May; 124(10):1690-1698. PubMed ID: 33723390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anoikis Patterns in Cervical Cancer: Identification of Subgroups and Construction of a Novel Risk Model for Predicting Prognosis and Immune Response.
    Xiang X; Ding J
    Front Biosci (Landmark Ed); 2023 Nov; 28(11):287. PubMed ID: 38062824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle-invasive bladder cancer (MIBC).
    Jiang W; Zhu D; Wang C; Zhu Y
    Cancer Med; 2020 Apr; 9(8):2774-2790. PubMed ID: 32096345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a 6-gene signature for the survival prediction of breast cancer patients based on integrated multi-omics data analysis.
    Mo W; Ding Y; Zhao S; Zou D; Ding X
    PLoS One; 2020; 15(11):e0241924. PubMed ID: 33170908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of prognosis-related genes in the cervical cancer immune microenvironment.
    Yang L; Yang Y; Meng M; Wang W; He S; Zhao Y; Gao H; Tang W; Liu S; Lin Z; Li L; Hou Z
    Gene; 2021 Jan; 766():145119. PubMed ID: 32946928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Pyroptosis-Related Prognostic Signature for Cervical Squamous Cell Carcinoma.
    Ou T; Wei Y; Long Y; Pan X; Yao D
    Int J Gen Med; 2022; 15():2057-2073. PubMed ID: 35237069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 63 signature genes prediction system is effective for glioblastoma prognosis.
    Zhang Y; Xu J; Zhu X
    Int J Mol Med; 2018 Apr; 41(4):2070-2078. PubMed ID: 29393370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A five-gene signature may predict sunitinib sensitivity and serve as prognostic biomarkers for renal cell carcinoma.
    Chen YL; Ge GJ; Qi C; Wang H; Wang HL; Li LY; Li GH; Xia LQ
    J Cell Physiol; 2018 Oct; 233(10):6649-6660. PubMed ID: 29327492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal subset of signature miRNAs consisting of 7 miRNAs that can serve as a novel diagnostic and prognostic predictor for the progression of cervical cancer.
    Shi C; Yang Y; Zhang L; Zhang T; Yu J; Qin S; Gao Y
    Oncol Rep; 2019 Jun; 41(6):3167-3178. PubMed ID: 30942460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering age-specific molecular features in cervical cancer and constructing an angio-immune prognostic model.
    Zhao X; Fan X; Lin X; Guo B; Yu Y
    Medicine (Baltimore); 2024 Apr; 103(15):e37717. PubMed ID: 38608077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer.
    Cai L; Hu C; Yu S; Liu L; Yu X; Chen J; Liu X; Lin F; Zhang C; Li W; Yan X
    BMC Cancer; 2020 Nov; 20(1):1133. PubMed ID: 33228592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Role of High-Risk Human Papillomavirus-Related Long Non-Coding RNAs in the Prognosis of Cervical Squamous Cell Carcinoma.
    Cheng Y; Yang S; Shen Y; Ding B; Wu W; Zhang Y; Liang G
    DNA Cell Biol; 2020 Apr; 39(4):645-653. PubMed ID: 32045269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment.
    Zhang FP; Huang YP; Luo WX; Deng WY; Liu CQ; Xu LB; Liu C
    World J Gastroenterol; 2020 Jan; 26(2):134-153. PubMed ID: 31969776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utility of a metabolic-associated nomogram to predict the recurrence-free survival of stage I cervical cancer.
    Zhang Y; Lu H; Zhang J; Wang S
    Future Oncol; 2021 Apr; 17(11):1325-1337. PubMed ID: 33631974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma.
    Meng H; Liu J; Qiu J; Nie S; Jiang Y; Wan Y; Cheng W
    DNA Cell Biol; 2020 May; 39(5):848-863. PubMed ID: 32202912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.