These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34498455)

  • 1. Survey of Micro/Nanofabricated Chemical, Topographical, and Compound Passive Wetting Gradient Surfaces.
    Lowrey S; Misiiuk K; Blaikie R; Sommers A
    Langmuir; 2022 Jan; 38(2):605-619. PubMed ID: 34498455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polygonal non-wetting droplets on microtextured surfaces.
    Lou J; Shi S; Ma C; Zhou X; Huang D; Zheng Q; Lv C
    Nat Commun; 2022 May; 13(1):2685. PubMed ID: 35562518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces.
    Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Combing of λ-DNA using Self-Propelled Water Droplets on Wettability Gradient Surfaces.
    Giri D; Li Z; Ashraf KM; Collinson MM; Higgins DA
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24265-72. PubMed ID: 27541167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-Induced Wettability Gradients for No-Loss Transport of Oil Droplets on Slippery Surfaces.
    Tang B; Meng C; Zhuang L; Groenewold J; Qian Y; Sun Z; Liu X; Gao J; Zhou G
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38723-38729. PubMed ID: 32846489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Transitional Wettability on Bamboo-Leaf-like Hierarchical-Structured Si Surface Fabricated by Microgrinding.
    Li P; Wang J; Huang J; Xiang J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Growth of Wettability Gradient Surfaces: A Review.
    Gulfam R; Chen Y
    Research (Wash D C); 2022; 2022():9873075. PubMed ID: 35935132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverging Effects of Topographical Continuity on the Wettability of a Rough Surface.
    Cho SU; Kim DI; Cho WK; Shin BS; Jeong MY
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29770-29778. PubMed ID: 27723959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled directional water-droplet spreading on a high-adhesion surface.
    Feng S; Wang S; Gao L; Li G; Hou Y; Zheng Y
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6163-7. PubMed ID: 24821428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection.
    Tang X; Huang J; Guo Z; Liu W
    J Colloid Interface Sci; 2021 Dec; 604():526-536. PubMed ID: 34280753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil.
    Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.