BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 3449856)

  • 1. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol.
    Nelson JW; Kallenbach NR
    Proteins; 1986 Nov; 1(3):211-7. PubMed ID: 3449856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix propagation in trifluoroethanol solutions.
    Storrs RW; Truckses D; Wemmer DE
    Biopolymers; 1992 Dec; 32(12):1695-702. PubMed ID: 1472652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis.
    Polverino de Laureto P; Frare E; Gottardo R; Fontana A
    Proteins; 2002 Nov; 49(3):385-97. PubMed ID: 12360528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a trifluoroethanol-induced partially folded state of alpha-lactalbumin.
    Alexandrescu AT; Ng YL; Dobson CM
    J Mol Biol; 1994 Jan; 235(2):587-99. PubMed ID: 8289283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states.
    Callihan DE; Logan TM
    J Mol Biol; 1999 Feb; 285(5):2161-75. PubMed ID: 9925792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding.
    Shiraki K; Nishikawa K; Goto Y
    J Mol Biol; 1995 Jan; 245(2):180-94. PubMed ID: 7799434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation.
    Wang M; Shan L; Wang J
    Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide.
    Jaravine VA; Alexandrescu AT; Grzesiek S
    Protein Sci; 2001 May; 10(5):943-50. PubMed ID: 11316874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure and function in trifluoroethanol of PP-50, an ATP-binding peptide from F1ATPase.
    Chuang WJ; Abeygunawardana C; Gittis AG; Pedersen PL; Mildvan AS
    Arch Biochem Biophys; 1995 May; 319(1):110-22. PubMed ID: 7771774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2,2,2-Trifluoroethanol-Induced structural change of peanut agglutinin at different pH: A comparative account.
    Dev S; Khan RH; Surolia A
    IUBMB Life; 2006 Aug; 58(8):473-9. PubMed ID: 16916785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the structure and dynamics of mastoparan-X during folding in aqueous TFE by CD and NMR spectroscopy.
    Crandall YM; Bruch MD
    Biopolymers; 2008 Mar; 89(3):197-209. PubMed ID: 18008325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Abeta conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy.
    Chen YR; Huang HB; Chyan CL; Shiao MS; Lin TH; Chen YC
    J Biochem; 2006 Apr; 139(4):733-40. PubMed ID: 16672274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin.
    Luo Y; Baldwin RL
    J Mol Biol; 1998 May; 279(1):49-57. PubMed ID: 9636699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism of model peptides emulating the amphipathic alpha-helical regions of intermediate filaments.
    Lazo ND; Downing DT
    Biochemistry; 1997 Mar; 36(9):2559-65. PubMed ID: 9054562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study.
    Dong A; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1998 Jul; 355(2):275-81. PubMed ID: 9675038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium binding peptides from alpha-lactalbumin: implications for protein folding and stability.
    Kuhlman B; Boice JA; Wu WJ; Fairman R; Raleigh DP
    Biochemistry; 1997 Apr; 36(15):4607-15. PubMed ID: 9109670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.