These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34498630)

  • 1. Constructing highly sensitive ratiometric nanothermometers based on indirectly thermally coupled levels.
    Wang Y; Lei L; Liu E; Cheng Y; Xu S
    Chem Commun (Camb); 2021 Sep; 57(72):9092-9095. PubMed ID: 34498630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Positive and Negative Thermal Quenching Effect for Ultrasensitive Ratiometric Temperature Sensing and Anti-counterfeiting.
    Wang Y; Lei L; Ye R; Jia G; Hua Y; Deng D; Xu S
    ACS Appl Mater Interfaces; 2021 May; 13(20):23951-23959. PubMed ID: 33974414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-NaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range.
    Xu X; Wang Z; Lei P; Yu Y; Yao S; Song S; Liu X; Su Y; Dong L; Feng J; Zhang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20813-9. PubMed ID: 26312746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared optical nanothermometry via upconversion of Ho
    Ryszczyńska S; Martín IR; Grzyb T
    Sci Rep; 2023 Sep; 13(1):14819. PubMed ID: 37684334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power.
    Stopikowska N; Runowski M; Skwierczyńska M; Lis S
    Nanoscale; 2021 Sep; 13(33):14139-14146. PubMed ID: 34477695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr
    Liu W; Wang X; Zhu Q; Li X; Sun X; Li JG
    Sci Technol Adv Mater; 2019; 20(1):949-963. PubMed ID: 31595178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Visible to Near-Infrared Luminescence through a Selective Doping Strategy for High-Performance Temperature Sensing.
    Dai M; Li K; Xu H; Fu Z
    Inorg Chem; 2024 Jul; 63(29):13413-13424. PubMed ID: 38961680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescent Nanothermometer Operating at Very High Temperature-Sensing up to 1000 K with Upconverting Nanoparticles (Yb
    Runowski M; Woźny P; Stopikowska N; Martín IR; Lavín V; Lis S
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43933-43941. PubMed ID: 32869638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NaYF
    Geitenbeek RG; Prins PT; Albrecht W; van Blaaderen A; Weckhuysen BM; Meijerink A
    J Phys Chem C Nanomater Interfaces; 2017 Feb; 121(6):3503-3510. PubMed ID: 28303168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive near infrared to near-infrared luminescence nanothermometer based on triple doped Ln -Y
    Porosnicu I; Colbea C; Baiasu F; Lungu M; Istrate MC; Avram D; Tiseanu C
    Methods Appl Fluoresc; 2020 Jul; 8(3):035005. PubMed ID: 32320952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity NaYF
    Cheng Z; Meng M; Wang J; Li Z; He J; Liang H; Qiao X; Liu Y; Ou J
    Nanoscale; 2023 Jul; 15(26):11179-11189. PubMed ID: 37340955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Er
    de Oliveira Lima K; Dos Santos LF; Galvão R; Tedesco AC; de Souza Menezes L; Gonçalves RR
    Front Chem; 2021; 9():712659. PubMed ID: 34368084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Er
    Chen D; Xu M; Ma M; Huang P
    Dalton Trans; 2017 Nov; 46(44):15373-15385. PubMed ID: 29072734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Phase Glass Ceramic: Structure, Dual-Modal Luminescence, and Temperature Sensing Behaviors.
    Chen D; Wan Z; Zhou Y; Zhou X; Yu Y; Zhong J; Ding M; Ji Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19484-93. PubMed ID: 26287513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering efficient upconverting nanothermometers using Eu
    Lucchini G; Speghini A; Canton P; Vetrone F; Quintanilla M
    Nanoscale Adv; 2019 Feb; 1(2):757-764. PubMed ID: 36132267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lanthanide nanocomposite with cross-relaxation enhanced near-infrared emissions as a ratiometric nanothermometer.
    Hu Q; Kong N; Chai Y; Xing Z; Wu Y; Zhang J; Li F; Zhu X
    Nanoscale Horiz; 2022 Sep; 7(10):1177-1185. PubMed ID: 35968804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-range ratiometric upconversion luminescence thermometry based on non-thermally coupled levels of Er in high-temperature cubic phase NaYF
    Janjua RA; Farooq U; Dai R; Wang Z; Zhang Z
    Opt Lett; 2019 Oct; 44(19):4678-4681. PubMed ID: 31568415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-center co-doped and mixed ratiometric LuVO
    Kolesnikov IE; Afanaseva EV; Kurochkin MA; Vaishlia EI; Kolesnikov EY; Lähderanta E
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35008067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF
    Lu K; Yi Y; Xu L; Sun X; Liu L; Li H
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What determines the performance of lanthanide-based ratiometric nanothermometers?
    Jia M; Sun Z; Zhang M; Xu H; Fu Z
    Nanoscale; 2020 Oct; 12(40):20776-20785. PubMed ID: 33030482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.