These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34498634)

  • 1. Time-resolved observations of vibrationally excited NO X
    Fletcher JD; Lanfri L; Ritchie GAD; Hancock G; Islam M; Richmond G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20478-20488. PubMed ID: 34498634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An FTIR emission study of the products of NO A
    Few J; Fletcher JD; Hancock G; Redmond JL; Ritchie GAD
    Phys Chem Chem Phys; 2017 May; 19(18):11289-11298. PubMed ID: 28418047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching.
    Few J; Hancock G
    Phys Chem Chem Phys; 2014 Jun; 16(22):11047-53. PubMed ID: 24777304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2.
    Mu B; Cui X; Shen Y; Dai K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():299-310. PubMed ID: 25909904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature collisional quenching of NO A(2)Σ(+)(v' = 0) by NO(X(2)Π) and O2 between 34 and 109 K.
    Sánchez-González R; Eveland WD; West NA; Mai CL; Bowersox RD; North SW
    J Chem Phys; 2014 Aug; 141(7):074313. PubMed ID: 25149792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collisional quenching of OD A 2Σ+ by H2: experimental and theoretical studies of the state-resolved OD X 2Π product distribution and branching fraction.
    Lehman JH; Dempsey LP; Lester MI; Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2010 Oct; 133(16):164307. PubMed ID: 21033788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].
    Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-resolved distribution of OH X 2Pi products arising from electronic quenching of OH A 2Sigma+ by N2.
    Dempsey LP; Sechler TD; Murray C; Lester MI; Matsika S
    J Chem Phys; 2009 Mar; 130(10):104307. PubMed ID: 19292534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products of the quenching of NO A 2Σ+ (v = 0) by N2O and CO2.
    Burgos Paci MA; Few J; Gowrie S; Hancock G
    Phys Chem Chem Phys; 2013 Feb; 15(7):2554-64. PubMed ID: 23296078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collisional quenching of NO A 2Sigma+(v' = 0) between 125 and 294 K.
    Settersten TB; Patterson BD; Carter CD
    J Chem Phys; 2009 May; 130(20):204302. PubMed ID: 19485444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric effect in the energy transfer reaction of oriented CO (a 3Π, v'=0, Ω=1 and 2) + NO (X 2Π) → NO (A 2Σ+, B 2Π) + CO (X 1Σ+).
    Ohoyama H; Matsuura Y
    J Phys Chem A; 2011 Jul; 115(28):8055-63. PubMed ID: 21671684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum state distribution of the OH X(2)Pi products from collisional quenching of OH A(2)Sigma(+) by O2 and CO2.
    Dempsey LP; Sechler TD; Murray C; Lester MI
    J Phys Chem A; 2009 Jun; 113(25):6851-8. PubMed ID: 19480405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging the nonreactive collisional quenching dynamics of NO (A
    Blackshaw KJ; Quartey NK; Korb RT; Hood DJ; Hettwer CD; Kidwell NM
    J Chem Phys; 2019 Sep; 151(10):104304. PubMed ID: 31521090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier Transform Spectroscopy of the A'(1)Pi-X(1)Sigma(+) System of CaO.
    Focsa C; Poclet A; Pinchemel B; Le Roy RJ ; Bernath PF
    J Mol Spectrosc; 2000 Oct; 203(2):330-338. PubMed ID: 10986145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-to-state vacuum ultraviolet photodissociation study of CO2 on the formation of state-correlated CO(X(1)Σ(+); v) with O((1)D) and O((1)S) photoproducts at 11.95-12.22 eV.
    Lu Z; Chang YC; Benitez Y; Luo Z; Houria AB; Ayari T; Al Mogren MM; Hochlaf M; Jackson WM; Ng CY
    Phys Chem Chem Phys; 2015 May; 17(17):11752-62. PubMed ID: 25868654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational distribution in NO(X2Pi) formed by self quenching of NO A 2Sigma+ (v=0).
    Hancock G; Saunders M
    Phys Chem Chem Phys; 2008 Apr; 10(15):2014-9. PubMed ID: 18688353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy levels and predissociation lifetimes of the A
    Qin Y; Zheng X; Song Y; Sun G; Zhang J
    J Chem Phys; 2022 Oct; 157(13):134303. PubMed ID: 36209014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Theoretical analysis of photoacoustic spectrum of NO molecule].
    Zhang GY; Jin YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):297-300. PubMed ID: 20384110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational relaxation dynamics of I35Cl(B, v') induced by low-temperature collisions with He atoms.
    Darr JP; Loomis RA
    Phys Chem Chem Phys; 2005 Sep; 7(18):3323-30. PubMed ID: 16240047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A laser induced fluorescence study relating to physical properties of the iodine monoxide radical.
    Gravestock TJ; Blitz MA; Heard DE
    Phys Chem Chem Phys; 2010 Jan; 12(4):823-34. PubMed ID: 20066367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.