These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34498685)
1. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Wu S; Fang Z; Tan J; Li M; Wang C; Guo Q; Xu C; Jiang X; Zhu H Gigascience; 2021 Sep; 10(9):. PubMed ID: 34498685 [TBL] [Abstract][Full Text] [Related]
2. PhaTYP: predicting the lifestyle for bacteriophages using BERT. Shang J; Tang X; Sun Y Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36659812 [TBL] [Abstract][Full Text] [Related]
3. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Fang Z; Tan J; Wu S; Li M; Xu C; Xie Z; Zhu H Gigascience; 2019 Jun; 8(6):. PubMed ID: 31220250 [TBL] [Abstract][Full Text] [Related]
4. Microbial Diversity and Phage-Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing. Jaiani E; Kusradze I; Kokashvili T; Geliashvili N; Janelidze N; Kotorashvili A; Kotaria N; Guchmanidze A; Tediashvili M; Prangishvili D Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33202695 [TBL] [Abstract][Full Text] [Related]
5. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data. Chu Y; Guo S; Cui D; Fu X; Ma Y PeerJ; 2022; 10():e13404. PubMed ID: 35698617 [TBL] [Abstract][Full Text] [Related]
6. HoPhage: an ab initio tool for identifying hosts of phage fragments from metaviromes. Tan J; Fang Z; Wu S; Guo Q; Jiang X; Zhu H Bioinformatics; 2022 Jan; 38(2):543-545. PubMed ID: 34383025 [TBL] [Abstract][Full Text] [Related]
7. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. Gao Y; Zhong Z; Zhang D; Zhang J; Li YX Microbiome; 2024 May; 12(1):94. PubMed ID: 38790030 [TBL] [Abstract][Full Text] [Related]
8. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Auslander N; Gussow AB; Benler S; Wolf YI; Koonin EV Nucleic Acids Res; 2020 Dec; 48(21):e121. PubMed ID: 33045744 [TBL] [Abstract][Full Text] [Related]
9. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Castro-Mejía JL; Muhammed MK; Kot W; Neve H; Franz CM; Hansen LH; Vogensen FK; Nielsen DS Microbiome; 2015 Nov; 3():64. PubMed ID: 26577924 [TBL] [Abstract][Full Text] [Related]
10. Accurate identification of bacteriophages from metagenomic data using Transformer. Shang J; Tang X; Guo R; Sun Y Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35769000 [TBL] [Abstract][Full Text] [Related]
11. Phage-bacterial contig association prediction with a convolutional neural network. Tang T; Hou S; Fuhrman JA; Sun F Bioinformatics; 2022 Jun; 38(Suppl 1):i45-i52. PubMed ID: 35758806 [TBL] [Abstract][Full Text] [Related]
12. Simulation study and comparative evaluation of viral contiguous sequence identification tools. Glickman C; Hendrix J; Strong M BMC Bioinformatics; 2021 Jun; 22(1):329. PubMed ID: 34130621 [TBL] [Abstract][Full Text] [Related]
13. DeepPL: A deep-learning-based tool for the prediction of bacteriophage lifecycle. Zhang Y; Mao M; Zhang R; Liao YT; Wu VCH PLoS Comput Biol; 2024 Oct; 20(10):e1012525. PubMed ID: 39418300 [TBL] [Abstract][Full Text] [Related]
15. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. Hannigan GD; Meisel JS; Tyldsley AS; Zheng Q; Hodkinson BP; SanMiguel AJ; Minot S; Bushman FD; Grice EA mBio; 2015 Oct; 6(5):e01578-15. PubMed ID: 26489866 [TBL] [Abstract][Full Text] [Related]
16. DeePhafier: a phage lifestyle classifier using a multilayer self-attention neural network combining protein information. Miao Y; Sun Z; Lin C; Gu H; Ma C; Liang Y; Wang G Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39110476 [TBL] [Abstract][Full Text] [Related]
17. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Galiez C; Siebert M; Enault F; Vincent J; Söding J Bioinformatics; 2017 Oct; 33(19):3113-3114. PubMed ID: 28957499 [TBL] [Abstract][Full Text] [Related]
18. PHACTS, a computational approach to classifying the lifestyle of phages. McNair K; Bailey BA; Edwards RA Bioinformatics; 2012 Mar; 28(5):614-8. PubMed ID: 22238260 [TBL] [Abstract][Full Text] [Related]
19. Bacteriophage classification for assembled contigs using graph convolutional network. Shang J; Jiang J; Sun Y Bioinformatics; 2021 Jul; 37(Suppl_1):i25-i33. PubMed ID: 34252923 [TBL] [Abstract][Full Text] [Related]
20. When Plaquing Is Not Possible: Computational Methods for Detecting Induced Phages. Miller-Ensminger T; Johnson G; Banerjee S; Putonti C Viruses; 2023 Feb; 15(2):. PubMed ID: 36851634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]