These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34498685)
21. The impact of storage buffer and storage conditions on fecal samples for bacteriophage infectivity and metavirome analyses. Zhai X; Castro-Mejía JL; Gobbi A; Aslampaloglou A; Kot W; Nielsen DS; Deng L Microbiome; 2023 Aug; 11(1):193. PubMed ID: 37635262 [TBL] [Abstract][Full Text] [Related]
22. PlasGUN: gene prediction in plasmid metagenomic short reads using deep learning. Fang Z; Tan J; Wu S; Li M; Wang C; Liu Y; Zhu H Bioinformatics; 2020 May; 36(10):3239-3241. PubMed ID: 32091572 [TBL] [Abstract][Full Text] [Related]
23. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Ren J; Ahlgren NA; Lu YY; Fuhrman JA; Sun F Microbiome; 2017 Jul; 5(1):69. PubMed ID: 28683828 [TBL] [Abstract][Full Text] [Related]
24. Identifying Phage Sequences From Metagenomic Data Using Deep Neural Network With Word Embedding and Attention Mechanism. Ma L; Deng W; Bai Y; Du Z; Xiao M; Wang L; Li J; Nandi AK IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3772-3785. PubMed ID: 37812548 [TBL] [Abstract][Full Text] [Related]
25. MetaPhage: an Automated Pipeline for Analyzing, Annotating, and Classifying Bacteriophages in Metagenomics Sequencing Data. Pandolfo M; Telatin A; Lazzari G; Adriaenssens EM; Vitulo N mSystems; 2022 Oct; 7(5):e0074122. PubMed ID: 36069454 [TBL] [Abstract][Full Text] [Related]
26. Mining, analyzing, and integrating viral signals from metagenomic data. Zheng T; Li J; Ni Y; Kang K; Misiakou MA; Imamovic L; Chow BKC; Rode AA; Bytzer P; Sommer M; Panagiotou G Microbiome; 2019 Mar; 7(1):42. PubMed ID: 30890181 [TBL] [Abstract][Full Text] [Related]
27. Assembly and Annotation of Viral Metagenomes from Short-Read Sequencing Data. Mangalea MR; Keift K; Duerkop BA; Anantharaman K Methods Mol Biol; 2023; 2649():317-337. PubMed ID: 37258871 [TBL] [Abstract][Full Text] [Related]
28. Classifying the Lifestyle of Metagenomically-Derived Phages Sequences Using Alignment-Free Methods. Song K Front Microbiol; 2020; 11():567769. PubMed ID: 33304326 [TBL] [Abstract][Full Text] [Related]
29. Dynamics of the viral community on the surface of a French smear-ripened cheese during maturation and persistence across production years. Paillet T; Lamy-Besnier Q; Figueroa C; Petit M-A; Dugat-Bony E mSystems; 2024 Jul; 9(7):e0020124. PubMed ID: 38860825 [TBL] [Abstract][Full Text] [Related]
31. Expanding the marine virosphere using metagenomics. Mizuno CM; Rodriguez-Valera F; Kimes NE; Ghai R PLoS Genet; 2013; 9(12):e1003987. PubMed ID: 24348267 [TBL] [Abstract][Full Text] [Related]
32. Computational prospecting the great viral unknown. Hurwitz BL; U'Ren JM; Youens-Clark K FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27030726 [TBL] [Abstract][Full Text] [Related]
33. Gauge your phage: benchmarking of bacteriophage identification tools in metagenomic sequencing data. Ho SFS; Wheeler NE; Millard AD; van Schaik W Microbiome; 2023 Apr; 11(1):84. PubMed ID: 37085924 [TBL] [Abstract][Full Text] [Related]
34. High Level of Interaction between Phages and Bacteria in an Artisanal Raw Milk Cheese Microbial Community. Queiroz LL; Lacorte GA; Isidorio WR; Landgraf M; de Melo Franco BDG; Pinto UM; Hoffmann C mSystems; 2023 Feb; 8(1):e0056422. PubMed ID: 36475872 [TBL] [Abstract][Full Text] [Related]
35. Mini-Metagenomics and Nucleotide Composition Aid the Identification and Host Association of Novel Bacteriophage Sequences. Deaton J; Yu FB; Quake SR Adv Biosyst; 2019 Nov; 3(11):e1900108. PubMed ID: 32648690 [TBL] [Abstract][Full Text] [Related]
36. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system. Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873 [TBL] [Abstract][Full Text] [Related]
37. A simple, reproducible and cost-effective procedure to analyse gut phageome: from phage isolation to bioinformatic approach. d'Humières C; Touchon M; Dion S; Cury J; Ghozlane A; Garcia-Garcera M; Bouchier C; Ma L; Denamur E; P C Rocha E Sci Rep; 2019 Aug; 9(1):11331. PubMed ID: 31383878 [TBL] [Abstract][Full Text] [Related]
38. Isolation of a Host-Confined Phage Metagenome Allows the Detection of Phages Both Capable and Incapable of Plaque Formation. Friedrich I; Hertel R Methods Mol Biol; 2023; 2555():195-203. PubMed ID: 36306088 [TBL] [Abstract][Full Text] [Related]
39. Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure. Pronk LJU; Medema MH Microb Genom; 2022 May; 8(5):. PubMed ID: 35503723 [TBL] [Abstract][Full Text] [Related]
40. Improving viral annotation with artificial intelligence. Flamholz ZN; Li C; Kelly L mBio; 2024 Oct; 15(10):e0320623. PubMed ID: 39230289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]