BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34498765)

  • 1. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2.
    Liouta K; Chabbert J; Benquet S; Tessier B; Studer V; Sainlos M; De Wit J; Thoumine O; Chamma I
    Biol Cell; 2021 Dec; 113(12):492-506. PubMed ID: 34498765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intracellular domain with a novel sequence regulates cell surface expression and synaptic clustering of leucine-rich repeat transmembrane proteins in hippocampal neurons.
    Minatohara K; Murata Y; Fujiyoshi Y; Doi T
    J Neurochem; 2015 Aug; 134(4):618-28. PubMed ID: 25951919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation.
    Ko J; Fuccillo MV; Malenka RC; Südhof TC
    Neuron; 2009 Dec; 64(6):791-8. PubMed ID: 20064387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation.
    Gokce O; Südhof TC
    J Neurosci; 2013 Sep; 33(36):14617-28. PubMed ID: 24005312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development.
    Siddiqui TJ; Pancaroglu R; Kang Y; Rooyakkers A; Craig AM
    J Neurosci; 2010 Jun; 30(22):7495-506. PubMed ID: 20519524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation.
    de Wit J; Sylwestrak E; O'Sullivan ML; Otto S; Tiglio K; Savas JN; Yates JR; Comoletti D; Taylor P; Ghosh A
    Neuron; 2009 Dec; 64(6):799-806. PubMed ID: 20064388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits.
    Dhume SH; Connor SA; Mills F; Tari PK; Au-Yeung SHM; Karimi B; Oku S; Roppongi RT; Kawabe H; Bamji SX; Wang YT; Brose N; Jackson MF; Craig AM; Siddiqui TJ
    Elife; 2022 Jun; 11():. PubMed ID: 35662394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal Structure of an Engineered LRRTM2 Synaptic Adhesion Molecule and a Model for Neurexin Binding.
    Paatero A; Rosti K; Shkumatov AV; Sele C; Brunello C; Kysenius K; Singha P; Jokinen V; Huttunen H; Kajander T
    Biochemistry; 2016 Feb; 55(6):914-26. PubMed ID: 26785044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo.
    Soler-Llavina GJ; Fuccillo MV; Ko J; Südhof TC; Malenka RC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16502-9. PubMed ID: 21953696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons.
    Ko J; Soler-Llavina GJ; Fuccillo MV; Malenka RC; Südhof TC
    J Cell Biol; 2011 Jul; 194(2):323-34. PubMed ID: 21788371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation.
    Soler-Llavina GJ; Arstikaitis P; Morishita W; Ahmad M; Südhof TC; Malenka RC
    Neuron; 2013 Aug; 79(3):439-46. PubMed ID: 23931994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of
    Bhouri M; Morishita W; Temkin P; Goswami D; Kawabe H; Brose N; Südhof TC; Craig AM; Siddiqui TJ; Malenka R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5382-E5389. PubMed ID: 29784826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin.
    Chamma I; Letellier M; Butler C; Tessier B; Lim KH; Gauthereau I; Choquet D; Sibarita JB; Park S; Sainlos M; Thoumine O
    Nat Commun; 2016 Mar; 7():10773. PubMed ID: 26979420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction.
    Yamagata A; Goto-Ito S; Sato Y; Shiroshima T; Maeda A; Watanabe M; Saitoh T; Maenaka K; Terada T; Yoshida T; Uemura T; Fukai S
    Nat Commun; 2018 Sep; 9(1):3964. PubMed ID: 30262834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules.
    Yang L; Zhang J; Liu S; Zhang Y; Wang L; Wang X; Wang S; Li K; Wei M; Zhang C
    Elife; 2024 Mar; 13():. PubMed ID: 38450720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.
    Hayer SN; Bading H
    J Biol Chem; 2015 Feb; 290(9):5523-32. PubMed ID: 25527504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dileucine and PDZ-binding motifs mediate synaptic adhesion-like molecule 1 (SALM1) trafficking in hippocampal neurons.
    Seabold GK; Wang PY; Petralia RS; Chang K; Zhou A; McDermott MI; Wang YX; Milgram SL; Wenthold RJ
    J Biol Chem; 2012 Feb; 287(7):4470-84. PubMed ID: 22174418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Properties of the Synaptogenic Activities of the Neurexin Ligands Neuroligin1 and LRRTM2.
    Dagar S; Gottmann K
    Front Mol Neurosci; 2019; 12():269. PubMed ID: 31780894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties.
    Chanda S; Hale WD; Zhang B; Wernig M; Südhof TC
    J Neurosci; 2017 Jul; 37(29):6816-6836. PubMed ID: 28607166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development.
    Pettem KL; Yokomaku D; Luo L; Linhoff MW; Prasad T; Connor SA; Siddiqui TJ; Kawabe H; Chen F; Zhang L; Rudenko G; Wang YT; Brose N; Craig AM
    Neuron; 2013 Oct; 80(1):113-28. PubMed ID: 24094106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.