These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34498885)

  • 1. Machine Learning Approach for Describing Water OH Stretch Vibrations.
    Kwac K; Freedman H; Cho M
    J Chem Theory Comput; 2021 Oct; 17(10):6353-6365. PubMed ID: 34498885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approach for describing vibrational solvatochromism.
    Kwac K; Cho M
    J Chem Phys; 2020 May; 152(17):174101. PubMed ID: 32384851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Frequency from the External Chemical Environment: OH Vibrations on Hydrated and Hydroxylated Surfaces.
    Röckert A; Kullgren J; Hermansson K
    J Chem Theory Comput; 2022 Dec; 18(12):7683-7694. PubMed ID: 36458913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular partition coefficient from machine learning with polarization and entropy embedded atom-centered symmetry functions.
    Zhu Q; Jia Q; Liu Z; Ge Y; Gu X; Cui Z; Fan M; Ma J
    Phys Chem Chem Phys; 2022 Oct; 24(38):23082-23088. PubMed ID: 36134471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions.
    Zhou M; Andrews L; Bauschlicher CW
    Chem Rev; 2001 Jul; 101(7):1931-61. PubMed ID: 11710236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential evolution algorithm approach for describing vibrational solvatochromism.
    Kwac K; Cho M
    J Chem Phys; 2019 Oct; 151(13):134112. PubMed ID: 31594319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C (L-ascorbic acid) and H2O.
    Dimitrova Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):427-37. PubMed ID: 16427351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants.
    Choi JH; Cho M
    J Chem Phys; 2013 May; 138(17):174108. PubMed ID: 23656115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water in toluene revisited: vibrational patterns in the stretching region.
    Ferreira JA; Ilharco LM; Costa SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jan; 57(1):137-47. PubMed ID: 11209855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding water clusters to an aromatic-rich hydrophobic pocket: [2.2.2]paracyclophane-(H2O)n, n = 1-5.
    Buchanan EG; Zwier TS
    J Phys Chem A; 2014 Sep; 118(37):8583-96. PubMed ID: 24840541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend.
    Imoto S; Xantheas SS; Saito S
    J Phys Chem B; 2015 Aug; 119(34):11068-78. PubMed ID: 26042611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning for Vibrational Spectroscopic Maps.
    Kananenka AA; Yao K; Corcelli SA; Skinner JL
    J Chem Theory Comput; 2019 Dec; 15(12):6850-6858. PubMed ID: 31614090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilar dynamics of coupled water vibrations.
    Jansen TL; Cringus D; Pshenichnikov MS
    J Phys Chem A; 2009 Jun; 113(22):6260-5. PubMed ID: 19438222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.
    Choi JH; Kim H; Kim S; Lim S; Chon B; Cho M
    J Chem Phys; 2015 May; 142(20):204102. PubMed ID: 26026429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.
    Błasiak B; Londergan CH; Webb LJ; Cho M
    Acc Chem Res; 2017 Apr; 50(4):968-976. PubMed ID: 28345879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties.
    Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B
    J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field fluctuations drive vibrational dephasing in water.
    Eaves JD; Tokmakoff A; Geissler PL
    J Phys Chem A; 2005 Oct; 109(42):9424-36. PubMed ID: 16866391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotope effects in liquid water by infrared spectroscopy. V. A sea of OH4 of C2v symmetry.
    Max JJ; Chapados C
    J Chem Phys; 2011 Apr; 134(16):164502. PubMed ID: 21528968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.