These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 34499018)
1. Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic Lymphoma Based on Radiomics and Machine Learning in Contrast-Enhanced Computer Tomography. Xu H; Zou X; Zhao Y; Zhang T; Tang Y; Zheng A; Zhou X; Ma X Technol Cancer Res Treat; 2021; 20():15330338211039125. PubMed ID: 34499018 [No Abstract] [Full Text] [Related]
3. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
4. Computed tomography-based radiomics combined with machine learning allows differentiation between primary intestinal lymphoma and Crohn's disease. Xiao MJ; Pan YT; Tan JH; Li HO; Wang HY World J Gastroenterol; 2024 Jul; 30(25):3155-3165. PubMed ID: 39006389 [TBL] [Abstract][Full Text] [Related]
5. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: A multi-institutional study. Chen B; Mao Y; Li J; Zhao Z; Chen Q; Yu Y; Yang Y; Dong Y; Lin G; Yao J; Lu M; Wu L; Bo Z; Chen G; Xie X Comput Biol Med; 2023 Dec; 167():107612. PubMed ID: 37939408 [TBL] [Abstract][Full Text] [Related]
6. Machine-learning-based computed tomography radiomic analysis for histologic subtype classification of thymic epithelial tumours. Hu J; Zhao Y; Li M; Liu Y; Wang F; Weng Q; You R; Cao D Eur J Radiol; 2020 May; 126():108929. PubMed ID: 32169748 [TBL] [Abstract][Full Text] [Related]
7. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
8. Radiomics based on Ou X; Zhang J; Wang J; Pang F; Wang Y; Wei X; Ma X Cancer Med; 2020 Jan; 9(2):496-506. PubMed ID: 31769230 [TBL] [Abstract][Full Text] [Related]
9. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
11. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
12. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
13. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: A multicentre cohort study. Bo Z; Chen B; Yang Y; Yao F; Mao Y; Yao J; Yang J; He Q; Zhao Z; Shi X; Chen J; Yu Z; Yang Y; Wang Y; Chen G Eur J Nucl Med Mol Imaging; 2023 Jul; 50(8):2501-2513. PubMed ID: 36922449 [TBL] [Abstract][Full Text] [Related]
14. An investigation of machine learning methods in delta-radiomics feature analysis. Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910 [TBL] [Abstract][Full Text] [Related]
15. Distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma by computed tomography and magnetic resonance imaging using the Bayesian method: a bi-center study. Ichikawa S; Isoda H; Shimizu T; Tamada D; Taura K; Togashi K; Onishi H; Motosugi U Eur Radiol; 2020 Nov; 30(11):5992-6002. PubMed ID: 32500195 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
17. Dynamic contract-enhanced CT-based radiomics for differentiation of pancreatobiliary-type and intestinal-type periampullary carcinomas. Bi L; Yang L; Ma J; Cai S; Li L; Huang C; Xu J; Wang X; Huang M Clin Radiol; 2022 Jan; 77(1):e75-e83. PubMed ID: 34753589 [TBL] [Abstract][Full Text] [Related]
18. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
19. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of machine learning-based modeling and prediction using multiple centers data to assess intrahepatic cholangiocarcinoma outcomes. Zhou SN; Jv DW; Meng XF; Zhang JJ; Liu C; Wu ZY; Hong N; Lu YY; Zhang N Ann Med; 2023 Dec; 55(1):215-223. PubMed ID: 36576390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]