BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34499150)

  • 1. Chromosome-level genome assembly of Gynostemma pentaphyllum provides insights into gypenoside biosynthesis.
    Huang D; Ming R; Xu S; Wang J; Yao S; Li L; Huang R; Tan Y
    DNA Res; 2021 Sep; 28(5):. PubMed ID: 34499150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide characterization of the bHLH gene family in Gynostemma pentaphyllum reveals its potential role in the regulation of gypenoside biosynthesis.
    Qin Y; Li J; Chen J; Yao S; Li L; Huang R; Tan Y; Ming R; Huang D
    BMC Plant Biol; 2024 Mar; 24(1):205. PubMed ID: 38509465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell transcriptome profiling reveals the spatiotemporal distribution of triterpenoid saponin biosynthesis and transposable element activity in
    Li R; Du K; Zhang C; Shen X; Yun L; Wang S; Li Z; Sun Z; Wei J; Li Y; Guo B; Sun C
    Front Plant Sci; 2024; 15():1394587. PubMed ID: 38779067
    [No Abstract]   [Full Text] [Related]  

  • 4. Integrative metabolomic and transcriptomic analyses reveals the accumulation patterns of key metabolites associated with flavonoids and terpenoids of Gynostemma pentaphyllum (Thunb.) Makino.
    Zhao X; Ge W; Miao Z
    Sci Rep; 2024 Apr; 14(1):8644. PubMed ID: 38622163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gypenoside induces apoptosis by inhibiting the PI3K/AKT/mTOR pathway and enhances T-cell antitumor immunity by inhibiting PD-L1 in gastric cancer.
    Wu H; Lai W; Wang Q; Zhou Q; Zhang R; Zhao Y
    Front Pharmacol; 2024; 15():1243353. PubMed ID: 38482051
    [No Abstract]   [Full Text] [Related]  

  • 6. Gynostemma Pentaphyllum ameliorates CCl
    Hu L; Zhao X; He X; Guo Y; Cheng H; Chen S; Zhou G; Wang J; Lu Y
    Chin Med; 2024 May; 19(1):70. PubMed ID: 38750545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saponins derived from Gynostemma pentaphyllum regulate triglyceride and cholesterol metabolism and the mechanisms: A review.
    Xie P; Luo HT; Pei WJ; Xiao MY; Li FF; Gu YL; Piao XL
    J Ethnopharmacol; 2024 Jan; 319(Pt 1):117186. PubMed ID: 37722515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and purification of high polar glycosides from aerial parts of Gynostemma pentaphyllum (Thunb.) Makino by linear gradient counter-current chromatography coupled with inner-recycling mode.
    Sun X; Xu L; Yan H; Li P; Hussain H; Liu J; Zhang J; Wang D
    J Sep Sci; 2023 Oct; 46(19):e2300238. PubMed ID: 37548129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of ultrasonic assisted membrane strategy for saponins from
    Li C; Ma Y; Zhi X; Peng G
    Food Sci Biotechnol; 2023 Mar; 32(3):319-328. PubMed ID: 36778093
    [No Abstract]   [Full Text] [Related]  

  • 10. Neuroprotective effects of Gypenosides: A review on preclinical studies in neuropsychiatric disorders.
    Liang G; Lee YZ; Kow ASF; Lee QL; Cheng Lim LW; Yusof R; Tham CL; Ho YC; Lee MT
    Eur J Pharmacol; 2024 Jun; 978():176766. PubMed ID: 38908668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics and metabolomics association analysis revealed the responses of
    Zhou Y; Yao L; Huang X; Li Y; Wang C; Huang Q; Yu L; Pan C
    Front Plant Sci; 2023; 14():1265971. PubMed ID: 37877087
    [No Abstract]   [Full Text] [Related]  

  • 12. Population genetic structure, migration, and polyploidy origin of a medicinal species
    Zhang X; Su H; Yang J; Feng L; Li Z; Zhao G
    Ecol Evol; 2019 Oct; 9(19):11145-11170. PubMed ID: 31641462
    [No Abstract]   [Full Text] [Related]  

  • 13. Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo.
    Zhou K; Zhang Y; Zhou Y; Xu M; Yu S
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gynostemma Pentaphyllum Increases Exercise Performance and Alters Mitochondrial Respiration and AMPK in Healthy Males.
    Nayyar D; Yan X; Xu G; Shi M; Garnham AP; Mathai ML; McAinch AJ
    Nutrients; 2023 Nov; 15(22):. PubMed ID: 38004115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gypenosides Production and Spermatogenesis Recovery Potentials of Extracts from Cell Suspension Cultures of
    Nguyen-Thanh T; Dang-Ngoc S; Tran-Quoc D; Hoang-Tan Q
    Avicenna J Med Biotechnol; 2023; 15(4):216-222. PubMed ID: 38078338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of heat-processed
    Xie JB; Xie P; Guo M; Li FF; Xiao MY; Qi YS; Pei WJ; Luo HT; Gu YL; Piao XL
    Front Pharmacol; 2023; 14():1215150. PubMed ID: 37822878
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Hong M; Cai Z; Song L; Liu Y; Wang Q; Feng X
    Evid Based Complement Alternat Med; 2018; 2018():8384631. PubMed ID: 29743925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chromosome-level reference genome of an aromatic medicinal plant Adenosma buchneroides.
    Huang H; Wang C; Pei S; Wang Y
    Sci Data; 2023 Sep; 10(1):660. PubMed ID: 37770464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening.
    Ma L; Wang Q; Mu J; Fu A; Wen C; Zhao X; Gao L; Li J; Shi K; Wang Y; Zhang X; Zhang X; Fei Z; Grierson D; Zuo J
    Hortic Res; 2020 Dec; 7(1):199. PubMed ID: 33328440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromosome-scale genome of Rhus chinensis Mill. provides new insights into plant-insect interaction and gallotannins biosynthesis.
    Ni BB; Liu H; Wang ZS; Zhang GY; Sang ZY; Liu JJ; He CY; Zhang JG
    Plant J; 2024 May; 118(3):766-786. PubMed ID: 38271098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.