These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Wang Y; Peng HC; Liu J; Huang CZ; Xia Y Nano Lett; 2015 Feb; 15(2):1445-50. PubMed ID: 25629786 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation. Suleiman IA; Radny MW; Gladys MJ; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ Phys Chem Chem Phys; 2015 Mar; 17(10):7038-45. PubMed ID: 25687716 [TBL] [Abstract][Full Text] [Related]
27. Nontypical Wulff-Shape Silicon Nanosheets with High Catalytic Activity. Lee M; Kim T; Jang W; Lee S; So JP; Jang G; Choi S; Kim S; Bae J; Kim T; Park HG; Moon J; Soon A; Shim W J Am Chem Soc; 2023 Oct; 145(41):22620-22632. PubMed ID: 37799086 [TBL] [Abstract][Full Text] [Related]
28. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. Fan Z; Zhang H Acc Chem Res; 2016 Dec; 49(12):2841-2850. PubMed ID: 27993013 [TBL] [Abstract][Full Text] [Related]
30. Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size. Rahm JM; Erhart P Nano Lett; 2017 Sep; 17(9):5775-5781. PubMed ID: 28792765 [TBL] [Abstract][Full Text] [Related]
31. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Kim KC; Dai B; Karl Johnson J; Sholl DS Nanotechnology; 2009 May; 20(20):204001. PubMed ID: 19420649 [TBL] [Abstract][Full Text] [Related]
32. Computational Characterization of β-Li Marana NL; Sgroi MF; Maschio L; Ferrari AM; D'Amore M; Casassa S Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014660 [TBL] [Abstract][Full Text] [Related]
33. Control over Structure and Properties in Nanocrystal Aerogels at the Nano-, Micro-, and Macroscale. Rusch P; Zámbó D; Bigall NC Acc Chem Res; 2020 Oct; 53(10):2414-2424. PubMed ID: 33030336 [TBL] [Abstract][Full Text] [Related]
34. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis. Qi X; Fichthorn KA Nanoscale; 2017 Oct; 9(40):15635-15642. PubMed ID: 28991308 [TBL] [Abstract][Full Text] [Related]
35. Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). Silly F; Castell MR Phys Rev Lett; 2005 Feb; 94(4):046103. PubMed ID: 15783576 [TBL] [Abstract][Full Text] [Related]
36. Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. Jun YW; Lee JH; Choi JS; Cheon J J Phys Chem B; 2005 Aug; 109(31):14795-806. PubMed ID: 16852873 [TBL] [Abstract][Full Text] [Related]
37. Size and shape controlled synthesis of rhodium nanoparticles. Xu L; Liu D; Chen D; Liu H; Yang J Heliyon; 2019 Jan; 5(1):e01165. PubMed ID: 30723833 [TBL] [Abstract][Full Text] [Related]
38. Shape-Dependent Single-Electron Levels for Au Nanoparticles. Barmparis GD; Kopidakis G; Remediakis IN Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773426 [TBL] [Abstract][Full Text] [Related]
39. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. Ng CH; Fan WY J Phys Chem B; 2006 Oct; 110(42):20801-7. PubMed ID: 17048890 [TBL] [Abstract][Full Text] [Related]
40. Thermodynamics of the size and shape of nanocrystals: epitaxial Ge on Si(001). Williams RS; Medeiros-Ribeiro G; Kamins TI; Ohlberg DA Annu Rev Phys Chem; 2000; 51():527-51. PubMed ID: 11031292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]