These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries. Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C Small; 2022 Jun; 18(22):e2201449. PubMed ID: 35557499 [TBL] [Abstract][Full Text] [Related]
4. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries. Su Z; Guo H; Zhao C Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988 [TBL] [Abstract][Full Text] [Related]
5. Limiting Interfacial Free Water and Proton Concentration by Hydrogel Electrolytes for Stable MoO Qin Z; Li X; Dong Q; Qi K; Chen S; Zhu Y Small; 2024 Aug; 20(32):e2400108. PubMed ID: 38511540 [TBL] [Abstract][Full Text] [Related]
6. Interlayer Engineering of α-MoO Zhang H; Wu W; Liu Q; Yang F; Shi X; Liu X; Yu M; Lu X Angew Chem Int Ed Engl; 2021 Jan; 60(2):896-903. PubMed ID: 33000516 [TBL] [Abstract][Full Text] [Related]
7. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage. Wang X; Xie Y; Tang K; Wang C; Yan C Angew Chem Int Ed Engl; 2018 Sep; 57(36):11569-11573. PubMed ID: 29752747 [TBL] [Abstract][Full Text] [Related]
8. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
9. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute. Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746 [TBL] [Abstract][Full Text] [Related]
10. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity. Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125 [TBL] [Abstract][Full Text] [Related]
11. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related]
12. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857 [TBL] [Abstract][Full Text] [Related]
13. A 1.9-V all-organic battery-supercapacitor hybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-saltelectrolyte. Tsai HH; Lin TJ; Vedhanarayanan B; Tsai CC; Chen TY; Ji X; Lin TW J Colloid Interface Sci; 2022 Apr; 612():76-87. PubMed ID: 34979412 [TBL] [Abstract][Full Text] [Related]
14. An Organic Acid-Alkali Coregulated Ionic Liquid Electrolyte Enabling Wide-Temperature-Range Proton Battery. Ma H; Yang M; Li R; Zheng L; Hao Y; Li H; Li M; Zhao G; Wang Z; Wang B; Hu M; Yang J Small; 2024 Oct; ():e2405004. PubMed ID: 39370658 [TBL] [Abstract][Full Text] [Related]
15. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes. Zuo W; Xu P; Li Y; Liu J Nanomaterials (Basel); 2015 Oct; 5(4):1756-1765. PubMed ID: 28347093 [TBL] [Abstract][Full Text] [Related]
16. Promoting Rechargeable Batteries Operated at Low Temperature. Dong X; Wang YG; Xia Y Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. Chua R; Cai Y; Lim PQ; Kumar S; Satish R; Manalastas W; Ren H; Verma V; Meng S; Morris SA; Kidkhunthod P; Bai J; Srinivasan M ACS Appl Mater Interfaces; 2020 May; 12(20):22862-22872. PubMed ID: 32343545 [TBL] [Abstract][Full Text] [Related]
18. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Luo JY; Cui WJ; He P; Xia YY Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897 [TBL] [Abstract][Full Text] [Related]
19. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854 [TBL] [Abstract][Full Text] [Related]
20. Proton/Mg Huang M; Wang X; Wang J; Meng J; Liu X; He Q; Geng L; An Q; Yang J; Mai L Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308961. PubMed ID: 37488950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]