These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 34499428)

  • 1. Dynamic Anti-Icing Surfaces (DAIS).
    Wang F; Zhuo Y; He Z; Xiao S; He J; Zhang Z
    Adv Sci (Weinh); 2021 Nov; 8(21):e2101163. PubMed ID: 34499428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Icephobic/anti-icing properties of superhydrophobic surfaces.
    Huang W; Huang J; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; HÃ¥konsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase change surfaces with porous metallic structures for long-term anti/de-icing application.
    Yang D; Bao R; Clare AT; Choi KS; Hou X
    J Colloid Interface Sci; 2024 Apr; 660():136-146. PubMed ID: 38241862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Surface Icephobicity on an Elastic Substrate.
    He Z; Jamil MI; Li T; Zhang Q
    Langmuir; 2022 Jan; 38(1):18-35. PubMed ID: 34919404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances of bio-inspired anti-icing surfaces.
    Jiang S; Diao Y; Yang H
    Adv Colloid Interface Sci; 2022 Oct; 308():102756. PubMed ID: 36007284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces.
    Yang Q; Luo Z; Jiang F; Luo Y; Tan S; Lu Z; Zhang Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29169-29178. PubMed ID: 27700030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover.
    Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling sequential rupture for lowering atomistic ice adhesion.
    Xiao S; Skallerud BH; Wang F; Zhang Z; He J
    Nanoscale; 2019 Sep; 11(35):16262-16269. PubMed ID: 31454002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependence of Surface Roughness on Icephobic Performance: A Review.
    Memon H; Wang J; Hou X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics of icing and rational design of surfaces with extraordinary icephobicity.
    Schutzius TM; Jung S; Maitra T; Eberle P; Antonini C; Stamatopoulos C; Poulikakos D
    Langmuir; 2015 May; 31(17):4807-21. PubMed ID: 25346213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture-Promoted Ultraslippery Ice Detachment Interface for Long-Lasting Anti-icing.
    Wang Z; Zhao Z; Wen G; Zhu Y; Chen J; Jing X; Sun S; Zhang L; Liu X; Chen H
    ACS Nano; 2023 Jul; 17(14):13724-13733. PubMed ID: 37403892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests.
    Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid infused surfaces with anti-icing properties.
    Wang G; Guo Z
    Nanoscale; 2019 Dec; 11(47):22615-22635. PubMed ID: 31755495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.
    Zhang S; Huang J; Cheng Y; Yang H; Chen Z; Lai Y
    Small; 2017 Dec; 13(48):. PubMed ID: 29058767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Icephobic Performance of Multi-Scale Laser-Textured Aluminum Surfaces for Aeronautic Applications.
    Milles S; Vercillo V; Alamri S; Aguilar-Morales AI; Kunze T; Bonaccurso E; Lasagni AF
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Anti-Icing Surfaces Based on Dual Functionality─Microstructurally-Induced Ice Shedding with Superimposed Nanostructurally-Enhanced Water Shedding.
    Wood MJ; Brock G; Debray J; Servio P; Kietzig AM
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47310-47321. PubMed ID: 36194885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion.
    Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.