These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34499839)

  • 1. Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles.
    Hatamie A; Ren L; Zhang X; Ewing AG
    Anal Chem; 2021 Oct; 93(39):13161-13168. PubMed ID: 34499839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Chemical Measurements of Vesicular Transmitters with Electrochemical Cytometry.
    Li X; Dunevall J; Ewing AG
    Acc Chem Res; 2016 Oct; 49(10):2347-2354. PubMed ID: 27622924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Aspects of Vesicle Opening during Analysis with Vesicle Impact Electrochemical Cytometry.
    Li X; Dunevall J; Ren L; Ewing AG
    Anal Chem; 2017 Sep; 89(17):9416-9423. PubMed ID: 28776974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore Opening at Flat and Nanotip Conical Electrodes during Vesicle Impact Electrochemical Cytometry.
    Li X; Ren L; Dunevall J; Ye D; White HS; Edwards MA; Ewing AG
    ACS Nano; 2018 Mar; 12(3):3010-3019. PubMed ID: 29513514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry.
    Zhang XW; Hatamie A; Ewing AG
    J Am Chem Soc; 2020 Mar; 142(9):4093-4097. PubMed ID: 32069039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos.
    Li H; Xie C; Li S; Xu K
    Colloids Surf B Biointerfaces; 2012 Jan; 89():175-81. PubMed ID: 21955508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotubes Mediate Fusion of Lipid Vesicles.
    Bhaskara RM; Linker SM; Vögele M; Köfinger J; Hummer G
    ACS Nano; 2017 Feb; 11(2):1273-1280. PubMed ID: 28103440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes.
    Goran JM; Stevenson KJ
    Langmuir; 2013 Nov; 29(44):13605-13. PubMed ID: 24156654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular injection of phospholipids directly alters exocytosis and the fraction of chemical release in chromaffin cells as measured by nano-electrochemistry.
    Aref M; Ranjbari E; Romiani A; Ewing AG
    Chem Sci; 2020 Oct; 11(43):11869-11876. PubMed ID: 34123212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes.
    Lovrić J; Najafinobar N; Dunevall J; Majdi S; Svir I; Oleinick A; Amatore C; Ewing AG
    Faraday Discuss; 2016 Dec; 193():65-79. PubMed ID: 27711871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited Fluorophores Enhance the Opening of Vesicles at Electrode Surfaces in Vesicle Electrochemical Cytometry.
    Najafinobar N; Lovrić J; Majdi S; Dunevall J; Cans AS; Ewing A
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15081-15085. PubMed ID: 27805774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.
    Ma CY; Huang SC; Chou PH; Den W; Hou CH
    Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Osmotic Stress Reduces the Vesicle Size while Keeping a Constant Neurotransmitter Concentration.
    Fathali H; Dunevall J; Majdi S; Cans AS
    ACS Chem Neurosci; 2017 Feb; 8(2):368-375. PubMed ID: 27966899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions.
    Lin D; Xing B
    Environ Sci Technol; 2008 Aug; 42(16):5917-23. PubMed ID: 18767645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.