These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34499851)

  • 1. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila.
    Cruz TL; Pérez SM; Chiappe ME
    Curr Biol; 2021 Oct; 31(20):4596-4607.e5. PubMed ID: 34499851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information.
    Esposti R; Bruttini C; Bolzoni F; Cavallari P
    Exp Brain Res; 2017 May; 235(5):1349-1360. PubMed ID: 28213690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nested mechanosensory feedback actively damps visually guided head movements in
    Cellini B; Mongeau JM
    Elife; 2022 Oct; 11():. PubMed ID: 36259536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of constraining eye movements on visually evoked steering responses during walking in a virtual environment.
    Reed-Jones R; Reed-Jones J; Vallis LA; Hollands M
    Exp Brain Res; 2009 Aug; 197(4):357-67. PubMed ID: 19582438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary feedback control enables effective gaze stabilization in animals.
    Cellini B; Salem W; Mongeau JM
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2121660119. PubMed ID: 35503912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila.
    Fujiwara T; Brotas M; Chiappe ME
    Neuron; 2022 Jul; 110(13):2124-2138.e8. PubMed ID: 35525243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do postural constraints affect eye, head, and arm coordination?
    Stamenkovic A; Stapley PJ; Robins R; Hollands MA
    J Neurophysiol; 2018 Oct; 120(4):2066-2082. PubMed ID: 30020836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.
    Kim A; Kretch KS; Zhou Z; Finley JM
    J Neurophysiol; 2018 Aug; 120(2):839-847. PubMed ID: 29742030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stroke affects the coordination of gaze and posture during preplanned turns while walking.
    Lamontagne A; Paquette C; Fung J
    Neurorehabil Neural Repair; 2007; 21(1):62-7. PubMed ID: 17172555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction-dependent control of balance during walking and standing.
    O'Connor SM; Kuo AD
    J Neurophysiol; 2009 Sep; 102(3):1411-9. PubMed ID: 19553493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking.
    Qiao M; Richards JT; Franz JR
    Hum Mov Sci; 2019 Dec; 68():102525. PubMed ID: 31731210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze and postural reorientation in the control of locomotor steering after stroke.
    Lamontagne A; Fung J
    Neurorehabil Neural Repair; 2009; 23(3):256-66. PubMed ID: 19060133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving
    Gowda SBM; Paranjpe PD; Reddy OV; Thiagarajan D; Palliyil S; Reichert H; VijayRaghavan K
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2115-E2124. PubMed ID: 29440493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot placement relies on state estimation during visually guided walking.
    Maeda RS; O'Connor SM; Donelan JM; Marigold DS
    J Neurophysiol; 2017 Feb; 117(2):480-491. PubMed ID: 27760813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrophobia impairs visual exploration and balance during standing and walking.
    Brandt T; Kugler G; Schniepp R; Wuehr M; Huppert D
    Ann N Y Acad Sci; 2015 Apr; 1343():37-48. PubMed ID: 25722015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.
    Chien JH; Eikema DJ; Mukherjee M; Stergiou N
    Ann Biomed Eng; 2014 Dec; 42(12):2512-23. PubMed ID: 25224076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Gaze Stabilization Critically Depend on Locomotor Speed.
    Dietrich H; Wuehr M
    Neuroscience; 2019 Jun; 408():418-429. PubMed ID: 30703510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-modal influence of mechanosensory input on gaze responses to visual motion in
    Mureli S; Thanigaivelan I; Schaffer ML; Fox JL
    J Exp Biol; 2017 Jun; 220(Pt 12):2218-2227. PubMed ID: 28385799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing Postural Demands of Walking While Still Emphasizing Locomotor Force Generation for Nonimpaired Individuals.
    Graham SA; Hurt CP; Brown DA
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1003-1010. PubMed ID: 29752235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.