These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34499951)
1. Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Vineis C; Cruz Maya I; Mowafi S; Varesano A; Sánchez Ramírez DO; Abou Taleb M; Tonetti C; Guarino V; El-Sayed H Int J Biol Macromol; 2021 Nov; 190():375-381. PubMed ID: 34499951 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method. Zhang X; Khan MM; Yamamoto T; Tsukada M; Morikawa H Int J Biol Macromol; 2012 Mar; 50(2):337-47. PubMed ID: 22198656 [TBL] [Abstract][Full Text] [Related]
3. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Zhao R; Li X; Sun B; Zhang Y; Zhang D; Tang Z; Chen X; Wang C Int J Biol Macromol; 2014 Jul; 68():92-7. PubMed ID: 24769088 [TBL] [Abstract][Full Text] [Related]
4. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. Yang M; Shuai Y; Zhou G; Mandal N; Zhu L; Mao C ACS Appl Mater Interfaces; 2014 Aug; 6(16):13782-9. PubMed ID: 25050697 [TBL] [Abstract][Full Text] [Related]
5. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. Bhowmick S; Scharnweber D; Koul V Biomaterials; 2016 May; 88():83-96. PubMed ID: 26946262 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk. Wang F; Wang Y; Tian C; Xu S; Wang R; Hou K; Chen W; Zhao P; Yu L; Lu Z; Kaplan DL; Xia Q Acta Biomater; 2018 Oct; 79():239-252. PubMed ID: 30149211 [TBL] [Abstract][Full Text] [Related]
7. Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization. Cruz-Maya I; Guarino V; Almaguer-Flores A; Alvarez-Perez MA; Varesano A; Vineis C J Biomed Mater Res A; 2019 Aug; 107(8):1803-1813. PubMed ID: 31004452 [TBL] [Abstract][Full Text] [Related]
9. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Bakhsheshi-Rad HR; Ismail AF; Aziz M; Akbari M; Hadisi Z; Omidi M; Chen X Int J Biol Macromol; 2020 Apr; 149():513-521. PubMed ID: 31954780 [TBL] [Abstract][Full Text] [Related]
10. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing - In vitro and in vivo investigations. Sapru S; Das S; Mandal M; Ghosh AK; Kundu SC Acta Biomater; 2018 Sep; 78():137-150. PubMed ID: 30059800 [TBL] [Abstract][Full Text] [Related]
11. Novel preparation and characterization of human hair-based nanofibers using electrospinning process. Park M; Shin HK; Panthi G; Rabbani MM; Alam AM; Choi J; Chung HJ; Hong ST; Kim HY Int J Biol Macromol; 2015 May; 76():45-8. PubMed ID: 25709023 [TBL] [Abstract][Full Text] [Related]
12. Differences in cytocompatibility between collagen, gelatin and keratin. Wang Y; Zhang W; Yuan J; Shen J Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():30-34. PubMed ID: 26652345 [TBL] [Abstract][Full Text] [Related]
13. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Panzavolta S; Gioffrè M; Focarete ML; Gualandi C; Foroni L; Bigi A Acta Biomater; 2011 Apr; 7(4):1702-9. PubMed ID: 21095244 [TBL] [Abstract][Full Text] [Related]
14. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation. Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure. Sun F; Guo J; Liu Y; Yu Y Biomed Mater; 2020 Jun; 15(4):045023. PubMed ID: 32155607 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S; Dinda AK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565 [TBL] [Abstract][Full Text] [Related]
17. Arginine induces protein self-assembly into nanofibers for triggering osteogenic differentiation of stem cells. Lei F; Zhou G; Chen Y; Cai J; Wang J; Shuai Y; Xu Z; Wang Z; Mao C; Yang M J Mater Chem B; 2021 Dec; 9(47):9764-9769. PubMed ID: 34806096 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Dhandayuthapani B; Krishnan UM; Sethuraman S J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):264-72. PubMed ID: 20524203 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of polycaprolactone/cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical application. Barnthip N; Teeka J; Kantha P; Teepoo S; Damjuti W Sci Rep; 2022 Dec; 12(1):22370. PubMed ID: 36572729 [TBL] [Abstract][Full Text] [Related]
20. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Jo YY; Kweon H; Kim DW; Baek K; Chae WS; Kang YJ; Oh JH; Kim SG; Garagiola U Int J Biol Macromol; 2021 Nov; 190():607-617. PubMed ID: 34508721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]