These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34499951)
21. Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Hajiali H; Shahgasempour S; Naimi-Jamal MR; Peirovi H Int J Nanomedicine; 2011; 6():2133-41. PubMed ID: 22114477 [TBL] [Abstract][Full Text] [Related]
22. Macroscopic Assembly of Sericin toward Self-Healable Silk. Lee H; Ahn D; Jeon E; Hui Fam DW; Lee J; Lee WJ Biomacromolecules; 2021 Oct; 22(10):4337-4346. PubMed ID: 34515486 [TBL] [Abstract][Full Text] [Related]
23. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Huang CY; Hu KH; Wei ZH Sci Rep; 2016 Dec; 6():37960. PubMed ID: 27917883 [TBL] [Abstract][Full Text] [Related]
24. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Akolpoğlu Başaran DD; Gündüz U; Tezcaner A; Keskin D Int J Pharm; 2021 Mar; 597():120207. PubMed ID: 33524526 [TBL] [Abstract][Full Text] [Related]
25. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. Isarankura Na Ayutthaya S; Tanpichai S; Sangkhun W; Wootthikanokkhan J Int J Biol Macromol; 2016 Apr; 85():585-95. PubMed ID: 26776870 [TBL] [Abstract][Full Text] [Related]
26. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Agheb M; Dinari M; Rafienia M; Salehi H Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():240-251. PubMed ID: 27987704 [TBL] [Abstract][Full Text] [Related]
27. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Yang M; Shuai Y; Zhang C; Chen Y; Zhu L; Mao C; OuYang H Biomacromolecules; 2014 Apr; 15(4):1185-93. PubMed ID: 24666022 [TBL] [Abstract][Full Text] [Related]
28. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
29. A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. Bazbouz MB; Liang H; Tronci G Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():541-555. PubMed ID: 30033285 [TBL] [Abstract][Full Text] [Related]
30. Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Prasong S; Yaowalak S; Wilaiwan S Pak J Biol Sci; 2009 Jun; 12(11):872-6. PubMed ID: 19803122 [TBL] [Abstract][Full Text] [Related]
31. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds]. Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491 [TBL] [Abstract][Full Text] [Related]
32. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin. Jo YN; Park BD; Um IC Int J Biol Macromol; 2015 Nov; 81():936-41. PubMed ID: 26407900 [TBL] [Abstract][Full Text] [Related]
33. In vitro evaluation of phytochemical loaded electrospun gelatin nanofibers for application in bone and cartilage tissue engineering. Venugopal E; Rajeswaran N; Sahanand KS; Bhattacharyya A; Rajendran S Biomed Mater; 2018 Oct; 14(1):015004. PubMed ID: 30249812 [TBL] [Abstract][Full Text] [Related]
34. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Zhang H; Xia J; Pang X; Zhao M; Wang B; Yang L; Wan H; Wu J; Fu S Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():537-543. PubMed ID: 28183642 [TBL] [Abstract][Full Text] [Related]
35. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Jin G; Prabhakaran MP; Ramakrishna S Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425 [TBL] [Abstract][Full Text] [Related]
36. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Wang P; He H; Cai R; Tao G; Yang M; Zuo H; Umar A; Wang Y Carbohydr Polym; 2019 May; 212():403-411. PubMed ID: 30832874 [TBL] [Abstract][Full Text] [Related]
37. A Novel Biocompatible and Biodegradable Electrospun Nanofibers Containing M. Neglectum: Antifungal Properties and In Vitro Investigation. Zarafshan H; Mojarab M; Zangeneh MM; Moradipour P; Bagheri F; Aghaz F; Arkan E IEEE Trans Nanobioscience; 2022 Oct; 21(4):520-528. PubMed ID: 34784282 [TBL] [Abstract][Full Text] [Related]
38. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization. Zhang C; Cao M; Lan J; Wei P; Cai Q; Yang X J Biomed Mater Res A; 2016 Aug; 104(8):1968-80. PubMed ID: 27027483 [TBL] [Abstract][Full Text] [Related]
39. Electrospinning of PVA/sericin nanofiber and the effect on epithelial-mesenchymal transition of A549 cells. Yan S; Li X; Dai J; Wang Y; Wang B; Lu Y; Shi J; Huang P; Gong J; Yao Y Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():436-444. PubMed ID: 28629038 [TBL] [Abstract][Full Text] [Related]
40. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Chen JP; Su CH Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]