BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34499953)

  • 1. A functional lignin-based nanofiller for flame-retardant blend.
    Wu Q; Ran F; Dai L; Li C; Li R; Si C
    Int J Biol Macromol; 2021 Nov; 190():390-395. PubMed ID: 34499953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants.
    Mandlekar N; Cayla A; Rault F; Giraud S; Salaün F; Guan J
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33121036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile-butadiene-styrene (ABS) copolymer.
    Brebu M; Bhaskar T; Murai K; Muto A; Sakata Y; Uddin MA
    Chemosphere; 2004 Aug; 56(5):433-40. PubMed ID: 15212908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers.
    He T; Chen F; Zhu W; Yan N
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1339-1351. PubMed ID: 35460757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties.
    Kundu CK; Li Z; Li X; Zhang Z; Hu Y
    Int J Biol Macromol; 2020 Aug; 156():362-371. PubMed ID: 32298721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a reactive lignin-based flame retardant and its application in phenolic foam.
    Zhou M; Zhong L; Hu L; Zhou Y; Yang X
    Environ Technol; 2024 May; 45(13):2506-2518. PubMed ID: 36751900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability.
    Maqsood M; Langensiepen F; Seide G
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30999658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin-Modified Carbon Nanotube/Graphene Hybrid Coating as Efficient Flame Retardant.
    Song K; Ganguly I; Eastin I; Dichiara AB
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin.
    Lu X; Gu X
    Int J Biol Macromol; 2022 Apr; 205():539-552. PubMed ID: 35217079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Charring-Functional Polyheptanazine towards Improvements in Flame Retardants of Polyurethane.
    Lu S; Shen B; Chen X
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33440778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching of brominated flame retardants (BFRs) from BFRs-incorporated plastics in digestive fluids and the influence of bird diets.
    Guo H; Zheng X; Luo X; Mai B
    J Hazard Mater; 2020 Jul; 393():122397. PubMed ID: 32114139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins.
    Sag J; Goedderz D; Kukla P; Greiner L; Schönberger F; Döring M
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31627395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression.
    Wu K; Xu S; Tian XY; Zeng HY; Hu J; Guo YH; Jian J
    Int J Biol Macromol; 2021 May; 178():580-590. PubMed ID: 33631261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient, Environmentally Friendly Lignin-Based Flame Retardant Used in Epoxy Resin.
    Dai P; Liang M; Ma X; Luo Y; He M; Gu X; Gu Q; Hussain I; Luo Z
    ACS Omega; 2020 Dec; 5(49):32084-32093. PubMed ID: 33344863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization of phosphorus-containing copolyester and its application as flame retardants for poly(butylene succinate) (PBS).
    Zhou X; Wu T
    Chemosphere; 2019 Nov; 235():163-168. PubMed ID: 31255756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of flame retardancy and flexural property on prepared plastic disks containing known concentrations of flame retardants through simulated weathering tests.
    Hanari N; Otake T; Itoh N; Wada A; Ohata M; Bao X; Shimizu Y; Falandysz J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(12):1287-1295. PubMed ID: 34590549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing Harmful Flame Retardants with Biodegradable Starch-Based Materials in Polyethylene Formulations.
    Carvalho BO; Gonçalves LPC; Mendonça PV; Pereira JP; Serra AC; Coelho JFJ
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-based melamine formaldehyde resins for flame-retardant polyurethane foams.
    Wang Y; Zheng X; Jiang K; Han D; Zhang Q
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):132836. PubMed ID: 38834127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparing cellulose nanocrystal/acrylonitrile-butadiene-styrene nanocomposites using the master-batch method.
    Ma L; Zhang Y; Meng Y; Anusonti-Inthra P; Wang S
    Carbohydr Polym; 2015 Jul; 125():352-9. PubMed ID: 25857992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.
    Chen H; Wang J; Ni A; Ding A; Han X; Sun Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.