These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 34500148)
1. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Zhi L; Su X; Yin M; Zhang Z; Lu H; Niu Z; Guo C; Zhu W; Zhang X Cell Immunol; 2021 Nov; 369():104436. PubMed ID: 34500148 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Gao Q; Dong X; Xu Q; Zhu L; Wang F; Hou Y; Chao CC Cancer Med; 2019 Aug; 8(9):4254-4264. PubMed ID: 31199589 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Huang D; Miller M; Ashok B; Jain S; Peppas NA Adv Drug Deliv Rev; 2020; 158():17-35. PubMed ID: 32707148 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Liu X; Zhao Y Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Salas-Mckee J; Kong W; Gladney WL; Jadlowsky JK; Plesa G; Davis MM; Fraietta JA Hum Vaccin Immunother; 2019; 15(5):1126-1132. PubMed ID: 30735463 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Mollanoori H; Shahraki H; Rahmati Y; Teimourian S Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221 [TBL] [Abstract][Full Text] [Related]
7. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042 [TBL] [Abstract][Full Text] [Related]
8. Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted? Wälchli S; Sioud M Methods Mol Biol; 2020; 2115():407-417. PubMed ID: 32006413 [TBL] [Abstract][Full Text] [Related]
9. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Afolabi LO; Adeshakin AO; Sani MM; Bi J; Wan X Immunology; 2019 Oct; 158(2):63-69. PubMed ID: 31315144 [TBL] [Abstract][Full Text] [Related]
10. Application of Genome Editing Techniques in Immunology. Zych AO; Bajor M; Zagozdzon R Arch Immunol Ther Exp (Warsz); 2018 Aug; 66(4):289-298. PubMed ID: 29344676 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. Ghaffari S; Khalili N; Rezaei N J Exp Clin Cancer Res; 2021 Aug; 40(1):269. PubMed ID: 34446084 [TBL] [Abstract][Full Text] [Related]
12. Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Wellhausen N; Agarwal S; Rommel PC; Gill SI; June CH Curr Opin Immunol; 2022 Feb; 74():76-84. PubMed ID: 34798542 [TBL] [Abstract][Full Text] [Related]
13. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Li C; Mei H; Hu Y Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135 [TBL] [Abstract][Full Text] [Related]
14. Retroviral Vectors for Cancer Gene Therapy. Schambach A; Morgan M Recent Results Cancer Res; 2016; 209():17-35. PubMed ID: 28101685 [TBL] [Abstract][Full Text] [Related]
15. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Liu J; Zhou G; Zhang L; Zhao Q Front Immunol; 2019; 10():456. PubMed ID: 30941126 [TBL] [Abstract][Full Text] [Related]
16. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells. Morgan MA; Büning H; Sauer M; Schambach A Front Immunol; 2020; 11():1965. PubMed ID: 32903482 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer. Kavousinia P; Ahmadi MH; Sadeghian H; Hosseini Bafghi M Cytotherapy; 2024 May; 26(5):436-443. PubMed ID: 38466263 [TBL] [Abstract][Full Text] [Related]
18. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Hoerster K; Uhrberg M; Wiek C; Horn PA; Hanenberg H; Heinrichs S Front Immunol; 2020; 11():586168. PubMed ID: 33584651 [TBL] [Abstract][Full Text] [Related]
19. Generating universal anti-CD19 CAR T cells with a defined memory phenotype by CRISPR/Cas9 editing and safety evaluation of the transcriptome. Pavlovic K; Carmona-Luque M; Corsi GI; Maldonado-Pérez N; Molina-Estevez FJ; Peralbo-Santaella E; Cortijo-Gutiérrez M; Justicia-Lirio P; Tristán-Manzano M; Ronco-Díaz V; Ballesteros-Ribelles A; Millán-López A; Heredia-Velázquez P; Fuster-García C; Cathomen T; Seemann SE; Gorodkin J; Martin F; Herrera C; Benabdellah K Front Immunol; 2024; 15():1401683. PubMed ID: 38868778 [TBL] [Abstract][Full Text] [Related]
20. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology. Sadeqi Nezhad M; Yazdanifar M; Abdollahpour-Alitappeh M; Sattari A; Seifalian A; Bagheri N Biotechnol Bioeng; 2021 Oct; 118(10):3691-3705. PubMed ID: 34241908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]