These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Monferrer A; Zhang D; Lushnikov AJ; Hermann T Nat Commun; 2019 Feb; 10(1):608. PubMed ID: 30723214 [TBL] [Abstract][Full Text] [Related]
4. Composing RNA Nanostructures from a Syntax of RNA Structural Modules. Geary C; Chworos A; Verzemnieks E; Voss NR; Jaeger L Nano Lett; 2017 Nov; 17(11):7095-7101. PubMed ID: 29039189 [TBL] [Abstract][Full Text] [Related]
5. Assembly of multienzyme complexes on DNA nanostructures. Fu J; Yang YR; Dhakal S; Zhao Z; Liu M; Zhang T; Walter NG; Yan H Nat Protoc; 2016 Nov; 11(11):2243-2273. PubMed ID: 27763626 [TBL] [Abstract][Full Text] [Related]
6. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles. Boerneke MA; Dibrov SM; Hermann T Angew Chem Int Ed Engl; 2016 Mar; 55(12):4097-100. PubMed ID: 26914842 [TBL] [Abstract][Full Text] [Related]
7. RNA-DNA Hybrid Nanoshape Synthesis by Facile Module Exchange. Chen S; Hermann T J Am Chem Soc; 2021 Dec; 143(48):20356-20362. PubMed ID: 34818893 [TBL] [Abstract][Full Text] [Related]
8. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Fu J; Liu M; Liu Y; Yan H Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503 [TBL] [Abstract][Full Text] [Related]
9. Controlling RNA self-assembly to form filaments. Nasalean L; Baudrey S; Leontis NB; Jaeger L Nucleic Acids Res; 2006; 34(5):1381-92. PubMed ID: 16522648 [TBL] [Abstract][Full Text] [Related]
10. Functional Applications of Nucleic Acid-Protein Hybrid Nanostructures. McCluskey JB; Clark DS; Glover DJ Trends Biotechnol; 2020 Sep; 38(9):976-989. PubMed ID: 32818445 [TBL] [Abstract][Full Text] [Related]
11. Assembly of barcode-like nucleic acid nanostructures. Wang P; Tian C; Li X; Mao C Small; 2014 Oct; 10(19):3923-6. PubMed ID: 24978689 [TBL] [Abstract][Full Text] [Related]
12. In vitro assembly of cubic RNA-based scaffolds designed in silico. Afonin KA; Bindewald E; Yaghoubian AJ; Voss N; Jacovetty E; Shapiro BA; Jaeger L Nat Nanotechnol; 2010 Sep; 5(9):676-82. PubMed ID: 20802494 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of self-assembled DNA nanostructures. Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361 [TBL] [Abstract][Full Text] [Related]
15. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Li M; Zheng M; Wu S; Tian C; Liu D; Weizmann Y; Jiang W; Wang G; Mao C Nat Commun; 2018 Jun; 9(1):2196. PubMed ID: 29875441 [TBL] [Abstract][Full Text] [Related]
16. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly. Sampedro Vallina N; McRae EKS; Geary C; Andersen ES Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605 [TBL] [Abstract][Full Text] [Related]
18. Cryo-EM structure of a 3D DNA-origami object. Bai XC; Martin TG; Scheres SH; Dietz H Proc Natl Acad Sci U S A; 2012 Dec; 109(49):20012-7. PubMed ID: 23169645 [TBL] [Abstract][Full Text] [Related]
19. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. Yang Y; Endo M; Hidaka K; Sugiyama H J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720 [TBL] [Abstract][Full Text] [Related]
20. Interlocked DNA topologies for nanotechnology. Valero J; Lohmann F; Famulok M Curr Opin Biotechnol; 2017 Dec; 48():159-167. PubMed ID: 28505598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]