BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34500622)

  • 1.
    Đulović A; Burčul F; Čulić VČ; Ruščić M; Brzović P; Montaut S; Rollin P; Blažević I
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from
    Blažević I; Đulović A; Čikeš Čulić V; Popović M; Guillot X; Burčul F; Rollin P
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32024150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosinolates of
    Montaut S; Read S; Blažević I; Nuzillard JM; Harakat D; Rollin P
    Nat Prod Res; 2021 Feb; 35(3):494-498. PubMed ID: 31242759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosinolates of
    Đulović A; Popović M; Burčul F; Čikeš Čulić V; Marijan S; Ruščić M; Anđelković N; Blažević I
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl and Methoxyl Derivatives of Benzylglucosinolate in Lepidium densiflorum with Hydrolysis to Isothiocyanates and non-Isothiocyanate Products: Substitution Governs Product Type and Mass Spectral Fragmentation.
    Pagnotta E; Agerbirk N; Olsen CE; Ugolini L; Cinti S; Lazzeri L
    J Agric Food Chem; 2017 Apr; 65(15):3167-3178. PubMed ID: 28343387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucosinolates and Cytotoxic Activity of Collard Volatiles Obtained Using Microwave-Assisted Extraction.
    Đulović A; Burčul F; Čikeš Čulić V; Rollin P; Blažević I
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial and Cytotoxic Activities of Lepidium latifolium L. Hydrodistillate, Extract and Its Major Sulfur Volatile Allyl Isothiocyanate.
    Blažević I; Đulović A; Maravić A; Čikeš Čulić V; Montaut S; Rollin P
    Chem Biodivers; 2019 Apr; 16(4):e1800661. PubMed ID: 30714673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucosinolates in Wild-Growing
    Đulović A; Tomaš J; Blažević I
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838744
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Blažević I; Đulović A; Čikeš Čulić V; Burčul F; Ljubenkov I; Ruščić M; Generalić Mekinić I
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791395
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification, synthesis, and enzymology of non-natural glucosinolate chemopreventive candidates.
    Mays JR; Weller Roska RL; Sarfaraz S; Mukhtar H; Rajski SR
    Chembiochem; 2008 Mar; 9(5):729-47. PubMed ID: 18327862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal.
    Ishikawa S; Maruyama A; Yamamoto Y; Hara S
    J Oleo Sci; 2014; 63(3):303-8. PubMed ID: 24492379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil.
    Gimsing AL; Poulsen JL; Pedersen HL; Hansen HC
    Environ Sci Technol; 2007 Jun; 41(12):4271-6. PubMed ID: 17626424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Effects of Glucosinolate Degradation Products from Horseradish: A Horse that Wins the Race.
    Popović M; Maravić A; Čikeš Čulić V; Đulović A; Burčul F; Blažević I
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32098279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and phytotoxicity of a new glucosinolate breakdown product from Meadowfoam (Limnanthes alba) seed meal.
    Intanon S; Reed RL; Stevens JF; Hulting AG; Mallory-Smith CA
    J Agric Food Chem; 2014 Jul; 62(30):7423-9. PubMed ID: 24998843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myrosinase-generated isothiocyanate from glucosinolates: isolation, characterization and in vitro antiproliferative studies.
    Leoni O; Iori R; Palmieri S; Esposito E; Menegatti E; Cortesi R; Nastruzzi C
    Bioorg Med Chem; 1997 Sep; 5(9):1799-806. PubMed ID: 9354235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography-Electron Spray Ionization-Tandem Mass Spectrometry.
    Andini S; Araya-Cloutier C; Sanders M; Vincken JP
    J Agric Food Chem; 2020 Mar; 68(10):3121-3131. PubMed ID: 32053364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolate content and isothiocyanate evolution--two measures of the biofumigation potential of plants.
    Warton B; Matthiessen JN; Shackleton MA
    J Agric Food Chem; 2001 Nov; 49(11):5244-50. PubMed ID: 11714311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucosinolate and Desulfo-glucosinolate Metabolism by a Selection of Human Gut Bacteria.
    Luang-In V; Albaser AA; Nueno-Palop C; Bennett MH; Narbad A; Rossiter JT
    Curr Microbiol; 2016 Sep; 73(3):442-451. PubMed ID: 27301252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.
    Sansom CE; Jones VS; Joyce NI; Smallfield BM; Perry NB; van Klink JW
    J Agric Food Chem; 2015 Feb; 63(6):1833-8. PubMed ID: 25625566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Biochemical Evaluation of an Artificial, Fluorescent Glucosinolate (GSL).
    Glindemann CP; Backenköhler A; Strieker M; Wittstock U; Klahn P
    Chembiochem; 2019 Sep; 20(18):2341-2345. PubMed ID: 30980446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.