BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34500767)

  • 1. Chitosan (CTS) Alleviates Heat-Induced Leaf Senescence in Creeping Bentgrass by Regulating Chlorophyll Metabolism, Antioxidant Defense, and the Heat Shock Pathway.
    Huang C; Tian Y; Zhang B; Hassan MJ; Li Z; Zhu Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan regulates metabolic balance, polyamine accumulation, and Na
    Geng W; Li Z; Hassan MJ; Peng Y
    BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.
    Jespersen D; Huang B
    Proteomics; 2015 Feb; 15(4):798-812. PubMed ID: 25407697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptability to High Temperature and Stay-Green Genotypes Associated With Variations in Antioxidant, Chlorophyll Metabolism, and γ-Aminobutyric Acid Accumulation in Creeping Bentgrass Species.
    Li Z; Tang M; Hassan MJ; Zhang Y; Han L; Peng Y
    Front Plant Sci; 2021; 12():750728. PubMed ID: 34777429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (
    Li Z; Peng Y; Huang B
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll loss associated with heat-induced senescence in bentgrass.
    Jespersen D; Zhang J; Huang B
    Plant Sci; 2016 Aug; 249():1-12. PubMed ID: 27297985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Heat Shock Factor Pathways by γ-aminobutyric Acid (GABA) Associated with Thermotolerance of Creeping Bentgrass.
    Liu T; Liu Z; Li Z; Peng Y; Zhang X; Ma X; Huang L; Liu W; Nie G; He L
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31547604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. γ-Aminobutyric Acid Enhances Heat Tolerance Associated with the Change of Proteomic Profiling in Creeping Bentgrass.
    Li Z; Zeng W; Cheng B; Huang T; Peng Y; Zhang X
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass.
    Jespersen D; Yu J; Huang B
    PLoS One; 2015; 10(3):e0123744. PubMed ID: 25822363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.
    Yang Z; Chang Z; Sun L; Yu J; Huang B
    PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera).
    Li Z; Huang T; Tang M; Cheng B; Peng Y; Zhang X
    Plant Physiol Biochem; 2019 Dec; 145():216-226. PubMed ID: 31707249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene.
    Larkindale J; Huang B
    J Plant Physiol; 2004 Apr; 161(4):405-13. PubMed ID: 15128028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.
    Wang K; Zhang X; Goatley M; Ervin E
    PLoS One; 2014; 9(7):e102914. PubMed ID: 25050702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.
    Sun X; Sun C; Li Z; Hu Q; Han L; Luo H
    Plant Cell Environ; 2016 Jun; 39(6):1320-37. PubMed ID: 26610288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Nov; 62(15):5311-33. PubMed ID: 21831843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass.
    Liu X; Huang B
    J Plant Physiol; 2008 Dec; 165(18):1947-53. PubMed ID: 18571284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation and stress-defensive key genes induced by γ-aminobutyric acid in association with tolerance to water stress in creeping bentgrass.
    Li Z; Tang M; Cheng B; Han L
    Plant Signal Behav; 2021 Mar; 16(3):1858247. PubMed ID: 33470151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin.
    Wang K; Zhang X; Ervin E
    J Plant Physiol; 2012 Mar; 169(5):492-500. PubMed ID: 22226339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. γ-Aminobutyric Acid Priming Alleviates Acid-Aluminum Toxicity to Creeping Bentgrass by Regulating Metabolic Homeostasis.
    Zhou M; Yuan Y; Lin J; Lin L; Zhou J; Li Z
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass.
    Tang M; Li Z; Luo L; Cheng B; Zhang Y; Zeng W; Peng Y
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.