BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34500797)

  • 1. Recent Advances about the Applications of Click Reaction in Chemical Proteomics.
    Yao T; Xu X; Huang R
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Click Chemistry in Proteomic Investigations.
    Parker CG; Pratt MR
    Cell; 2020 Feb; 180(4):605-632. PubMed ID: 32059777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of click chemistry in the emerging field of catalomics.
    Kalesh KA; Shi H; Ge J; Yao SQ
    Org Biomol Chem; 2010 Apr; 8(8):1749-62. PubMed ID: 20449474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of O-GlcNAcase inhibitors via 'click chemistry' and biological evaluations.
    Li T; Guo L; Zhang Y; Wang J; Li Z; Lin L; Zhang Z; Li L; Lin J; Zhao W; Li J; Wang PG
    Carbohydr Res; 2011 Jul; 346(9):1083-92. PubMed ID: 21514574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation.
    Xiao H; Suttapitugsakul S; Sun F; Wu R
    Acc Chem Res; 2018 Aug; 51(8):1796-1806. PubMed ID: 30011186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical proteomics approaches for identifying the cellular targets of natural products.
    Wright MH; Sieber SA
    Nat Prod Rep; 2016 May; 33(5):681-708. PubMed ID: 27098809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors.
    He XP; Xie J; Tang Y; Li J; Chen GR
    Curr Med Chem; 2012; 19(15):2399-405. PubMed ID: 22455590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive profiling for enzyme inhibitors using chemical probes.
    Prothiwa M; Böttcher T
    Methods Enzymol; 2020; 633():49-69. PubMed ID: 32046853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein click chemistry and its potential for medical applications.
    Amiri A; Abedanzadeh S; Davaeil B; Shaabani A; Moosavi-Movahedi AA
    Q Rev Biophys; 2024 Apr; 57():e6. PubMed ID: 38619322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry.
    Zaia J
    Anal Bioanal Chem; 2023 Feb; 415(4):527-532. PubMed ID: 36602567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Cell-Permeable O-GlcNAc Transferase Inhibitors via Tethering in Situ Click Chemistry.
    Wang Y; Zhu J; Zhang L
    J Med Chem; 2017 Jan; 60(1):263-272. PubMed ID: 28032764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications and opportunities of click chemistry in plant science.
    Chen MM; Kopittke PM; Zhao FJ; Wang P
    Trends Plant Sci; 2024 Feb; 29(2):167-178. PubMed ID: 37612212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Proteomics of Host-Microbe Interactions.
    Wright MH
    Proteomics; 2018 Sep; 18(18):e1700333. PubMed ID: 29745013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-based protein profiling in microbes and the gut microbiome.
    Han L; Chang PV
    Curr Opin Chem Biol; 2023 Oct; 76():102351. PubMed ID: 37429085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.
    Liu Z; Liu J; Liu Z; Wang H; Ou J; Ye M; Zou H
    J Chromatogr A; 2017 May; 1498():29-36. PubMed ID: 28109527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying small molecule microarrays and resulting affinity probe cocktails for proteome profiling of mammalian cell lysates.
    Shi H; Uttamchandani M; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2803-15. PubMed ID: 21898842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical strategies for functional proteomics.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):781-90. PubMed ID: 12438561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-based proteome profiling using an affinity-based probe (AfBP) derived from 3-deazaneplanocin A (DzNep).
    Tam EK; Li Z; Goh YL; Cheng X; Wong SY; Santhanakrishnan S; Chai CL; Yao SQ
    Chem Asian J; 2013 Aug; 8(8):1818-28. PubMed ID: 23749335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.