These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34500871)

  • 21. Size-structure-property relationship of wood particles in aqueous and dry insulative foams.
    Dobrzanski E; Ferreira ES; Tiwary P; Agrawal P; Chen R; Cranston ED
    Carbohydr Polym; 2024 Jul; 335():122077. PubMed ID: 38616097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET.
    Ivdre A; Abolins A; Sevastyanova I; Kirpluks M; Cabulis U; Merijs-Meri R
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32224860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust.
    Bartczak P; Stachowiak J; Szmitko M; Grząbka-Zasadzińska A; Borysiak S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite.
    Członka S; Kairytė A; Miedzińska K; Strąkowska A
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites.
    Paciorek-Sadowska J; Borowicz M; Isbrandt M; Czupryński B; Apiecionek Ł
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31480439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite.
    Członka S; Kairytė A; Miedzińska K; Strąkowska A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33467655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new study of dynamic mechanical analysis and the microstructure of polyurethane foams filled.
    Boumdouha N; Safidine Z; Boudiaf A
    Turk J Chem; 2022; 46(3):814-834. PubMed ID: 37720608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Evening Primrose (
    Paciorek-Sadowska J; Borowicz M; Isbrandt M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Characterization of Wood Rigid Polyurethane Composites.
    Bradai H; Koubaa A; Bouafif H; Langlois A; Samet B
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Sunflower Press Cake and Its Modification with Liquid Glass on Polyurethane Foam Composites: Thermal Stability, Ignitability, and Fire Resistance.
    Kairytė A; Członka S; Šeputytė-Jucikė J; Vėjelis S
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Reactive Amine-Based Catalysts on Cryogenic Properties of Rigid Polyurethane Foams for Space and On-Ground Applications.
    Yakushin V; Rundans M; Holynska M; Sture B; Cabulis U
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scale-Up and Testing of Polyurethane Bio-Foams as Potential Cryogenic Insulation Materials.
    Kurańska M; Cabulis U; Prociak A; Polaczek K; Uram K; Kirpluks M
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol.
    Kosmela P; Hejna A; Suchorzewski J; Piszczyk Ł; Haponiuk JT
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam.
    Henry C; Gondaliya A; Thies M; Nejad M
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and Characterization of "Green Open-Cell Polyurethane Foams" with Reduced Flammability.
    Kurańska M; Beneš H; Sałasińska K; Prociak A; Malewska E; Polaczek K
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33266256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil.
    Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams.
    Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable, Flame-Retardant, and Bio-Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application.
    Borowicz M; Paciorek-Sadowska J; Lubczak J; Czupryński B
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31694273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sapropel as a Binding Material for Wood Processing Waste in the Development of Thermal Insulation Biocomposite.
    Vėjelis S; Karimova MB; Kuatbayeva TK; Kairytė A; Šeputytė-Jucikė J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.