These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34500877)
1. Exploring the Potential of Cotton Industry Byproducts in the Plastic Composite Sector: Macro and Micromechanics Study of the Flexural Modulus. Serra A; Serra-Parareda F; Vilaseca F; Delgado-Aguilar M; Espinach FX; Tarrés Q Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500877 [TBL] [Abstract][Full Text] [Related]
2. Modeling the Stiffness of Coupled and Uncoupled Recycled Cotton Fibers Reinforced Polypropylene Composites. Serra A; Tarrés Q; Chamorro MÀ; Soler J; Mutjé P; Espinach FX; Vilaseca F Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31640226 [TBL] [Abstract][Full Text] [Related]
3. Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Serra-Parareda F; Espinach FX; Pelach MÀ; Méndez JA; Vilaseca F; Tarrés Q Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32604815 [TBL] [Abstract][Full Text] [Related]
4. Valorization of Date Palm Waste for Plastic Reinforcement: Macro and Micromechanics of Flexural Strength. Belgacem C; Serra-Parareda F; Tarrés Q; Mutjé P; Delgado-Aguilar M; Boufi S Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071915 [TBL] [Abstract][Full Text] [Related]
5. Effective Young's Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Serra-Parareda F; Vilaseca F; Aguado R; Espinach FX; Tarrés Q; Delgado-Aguilar M Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833245 [TBL] [Abstract][Full Text] [Related]
6. Nanocellulose reinforced lightweight composites produced from cotton waste via integrated nanofibrillation and compounding. Liang D; Liu W; Zhong T; Liu H; Dhandapani R; Li H; Wang J; Wolcott M Sci Rep; 2023 Feb; 13(1):2144. PubMed ID: 36750579 [TBL] [Abstract][Full Text] [Related]
7. Mechanical Performance of Knitted Hollow Composites from Recycled Cotton and Glass Fibers for Packaging Applications. Jamshaid H; Mishra R; Zeeshan M; Zahid B; Basra SA; Tichy M; Muller M Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301138 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Serra-Parareda F; Julián F; Espinosa E; Rodríguez A; Espinach FX; Vilaseca F Molecules; 2020 May; 25(9):. PubMed ID: 32397611 [TBL] [Abstract][Full Text] [Related]
9. Behavior of the Flexural Strength of Hemp/Polypropylene Composites: Evaluation of the Intrinsic Flexural Strength of Untreated Hemp Strands. Vallejos ME; Aguado RJ; Morcillo-Martín R; Méndez JA; Vilaseca F; Tarrés Q; Mutjé P Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679252 [TBL] [Abstract][Full Text] [Related]
10. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Reddy N; Yang Y Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Cellulose-Basalt Polypropylene Composites with Enhanced Compatibility: The Role of Coupling Agent. Sergi C; Sbardella F; Lilli M; Tirillò J; Calzolari A; Sarasini F Molecules; 2020 Sep; 25(19):. PubMed ID: 32987669 [TBL] [Abstract][Full Text] [Related]
12. Circular Production, Designing, and Mechanical Testing of Polypropylene-Based Reinforced Composite Materials: Statistical Analysis for Potential Automotive and Nuclear Applications. Hussain A; Podgursky V; Goljandin D; Antonov M; Sergejev F; Krasnou I Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631467 [TBL] [Abstract][Full Text] [Related]
13. Use of Organic Acids in Bamboo Fiber-Reinforced Polypropylene Composites: Mechanical Properties and Interfacial Morphology. Fajardo Cabrera de Lima LDP; Chamorro Rodríguez CD; Mina Hernandez JH Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205271 [TBL] [Abstract][Full Text] [Related]
14. Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers. Serra-Parareda F; Vilaseca F; Espinach FX; Mutjé P; Delgado-Aguilar M; Tarrés Q Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670806 [TBL] [Abstract][Full Text] [Related]
15. Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young's Modulus. Chihaoui B; Serra-Parareda F; Tarrés Q; Espinach FX; Boufi S; Delgado-Aguilar M Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751192 [TBL] [Abstract][Full Text] [Related]
16. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Zhou Y; Stanchev P; Katsou E; Awad S; Fan M Waste Manag; 2019 Nov; 99():42-48. PubMed ID: 31472439 [TBL] [Abstract][Full Text] [Related]
17. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. Cesar PF; Miranda WG; Braga RR J Prosthet Dent; 2001 Sep; 86(3):289-96. PubMed ID: 11552166 [TBL] [Abstract][Full Text] [Related]
18. Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers. Aguado RJ; Bastida GA; Espinach FX; Llorens J; Tarrés Q; Delgado-Aguilar M; Mutjé P Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447605 [TBL] [Abstract][Full Text] [Related]
19. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. Reddy N; Yang Y J Agric Food Chem; 2007 Jul; 55(14):5569-74. PubMed ID: 17579436 [TBL] [Abstract][Full Text] [Related]
20. Manufacture and Characterization of Recycled Polypropylene and Olive Pits Biocomposites. Jurado-Contreras S; Navas-Martos FJ; Rodríguez-Liébana JA; Moya AJ; La Rubia MD Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]