These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34500904)

  • 41. Catalytic combustion of ethyl acetate on supported copper oxide catalysts.
    Yang Y; Xu X; Sun K
    J Hazard Mater; 2007 Jan; 139(1):140-5. PubMed ID: 17008000
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pentacoordinated Al
    Duan H; You R; Xu S; Li Z; Qian K; Cao T; Huang W; Bao X
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12043-12048. PubMed ID: 31192496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly selective PdCu/amorphous silica-alumina (ASA) catalysts for groundwater denitration.
    Xie Y; Cao H; Li Y; Zhang Y; Crittenden JC
    Environ Sci Technol; 2011 May; 45(9):4066-72. PubMed ID: 21473571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H; Kong X; Huang H; Zhou Y; Chen Y
    J Environ Sci (China); 2015 Jun; 32():102-7. PubMed ID: 26040736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH
    Qi L; Sun Z; Tang Q; Wang J; Huang T; Sun C; Gao F; Tang C; Dong L
    J Hazard Mater; 2020 Sep; 396():122459. PubMed ID: 32302885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation of the Mn/Co mixed oxide catalysts for low-temperature CO oxidation reaction.
    Ghiassee M; Rezaei M; Meshkani F; Mobini S
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):379-388. PubMed ID: 32808130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NO oxidation catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study.
    Zhou C; Liu X; Wu C; Wen Y; Xue Y; Chen R; Zhang Z; Shan B; Yin H; Wang WG
    Phys Chem Chem Phys; 2014 Mar; 16(11):5106-12. PubMed ID: 24477345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic effect of modified Pd-based cobalt chromite and manganese oxide system towards NO-CO redox detoxification reaction.
    Kerkar RD; Salker AV
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):27061-27071. PubMed ID: 32388757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of surface synergetic oxygen vacancy in CuO-CoO binary metal oxides supported on γ-Al2O3 for NO removal by CO.
    Lv Y; Liu L; Zhang H; Yao X; Gao F; Yao K; Dong L; Chen Y
    J Colloid Interface Sci; 2013 Jan; 390(1):158-69. PubMed ID: 23089598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane.
    Li Z; Peters AW; Platero-Prats AE; Liu J; Kung CW; Noh H; DeStefano MR; Schweitzer NM; Chapman KW; Hupp JT; Farha OK
    J Am Chem Soc; 2017 Oct; 139(42):15251-15258. PubMed ID: 28976757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of magnesia modification on the properties of copper oxide supported on gamma-alumina.
    Wang Z; Wan H; Liu B; Zhao X; Li X; Zhu H; Xu X; Ji F; Sun K; Dong L; Chen Y
    J Colloid Interface Sci; 2008 Apr; 320(2):520-6. PubMed ID: 18304566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of MnO
    Huang Q; Si H; Yu S; Wang J; Tao T; Yang B; Zhao Y; Chen M
    Environ Technol; 2020 May; 41(13):1664-1676. PubMed ID: 30379618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia.
    Chary KV; Sagar GV; Srikanth CS; Rao VV
    J Phys Chem B; 2007 Jan; 111(3):543-50. PubMed ID: 17228912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of Co-O bond in (110) facet exposed Co
    Sun L; Liang X; Liu H; Cao H; Liu X; Jin Y; Li X; Chen S; Wu X
    J Hazard Mater; 2023 Jun; 452():131319. PubMed ID: 37004446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic Performance of Supported Pd Catalyst Prepared with Different Palladium Precursors for Catalytic Combustion of BTH.
    Jung SC; Park YK; Park HR; Kang UI; Jung HY; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2019 Feb; 19(2):1208-1212. PubMed ID: 30360236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts.
    Lebarbier VM; Karim AM; Engelhard MH; Wu Y; Xu BQ; Petersen EJ; Datye AK; Wang Y
    ChemSusChem; 2011 Nov; 4(11):1679-84. PubMed ID: 21919212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CeO
    Liu Z; Li J; Wang R
    J Colloid Interface Sci; 2020 Feb; 560():91-102. PubMed ID: 31654899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.