These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 34500922)
1. Effect of Phase Changes on the Axial Modulus of an FeMnSi-Shape Memory Alloy. Yang Y; Breveglieri M; Shahverdi M Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500922 [TBL] [Abstract][Full Text] [Related]
2. Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi-Ag Shape Memory Alloys. Roman AM; Cimpoeșu R; Pricop B; Lohan NM; Cazacu MM; Bujoreanu LG; Panaghie C; Zegan G; Cimpoeșu N; Murariu AM J Funct Biomater; 2023 Jul; 14(7):. PubMed ID: 37504873 [TBL] [Abstract][Full Text] [Related]
3. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys. Kim KM; Kim HY; Miyazaki S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963854 [TBL] [Abstract][Full Text] [Related]
4. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494 [TBL] [Abstract][Full Text] [Related]
5. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Hieda J Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686 [TBL] [Abstract][Full Text] [Related]
6. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
7. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic resonance susceptibility. Zhao XL; Li L; Niinomi M; Nakai M; Zhang DL; Suryanarayana C Acta Biomater; 2017 Oct; 62():372-384. PubMed ID: 28827184 [TBL] [Abstract][Full Text] [Related]
8. Rapid Characterization of Local Shape Memory Properties through Indentation. Li P; Karaca HE; Cheng YT Sci Rep; 2017 Nov; 7(1):14827. PubMed ID: 29093450 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Hieda J; Ishimoto T; Nakano T Acta Biomater; 2012 Jul; 8(6):2392-400. PubMed ID: 22342893 [TBL] [Abstract][Full Text] [Related]
10. High pressure torsion induced lowering of Young's modulus in high strength TNZT alloy for bio-implant applications. Maity T; Balcı Ö; Gammer C; Ivanov E; Eckert J; Prashanth KG J Mech Behav Biomed Mater; 2020 Aug; 108():103839. PubMed ID: 32469711 [TBL] [Abstract][Full Text] [Related]
11. Effect of Pore Shape on Mechanical Properties of Porous Shape Memory Alloy. Liu B; Pan Y Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457871 [TBL] [Abstract][Full Text] [Related]
12. Two-Way Shape Memory Effect Induced by Tensile Deformation in Columnar-Grained Cu Yao PS; Huang HY; Su YJ; Xie JX Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373164 [TBL] [Abstract][Full Text] [Related]
13. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition. Li Q; Niinomi M; Hieda J; Nakai M; Cho K Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220 [TBL] [Abstract][Full Text] [Related]
14. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060 [TBL] [Abstract][Full Text] [Related]
16. Effect of swaging on Young׳s modulus of β Ti-33.6Nb-4Sn alloy. Hanada S; Masahashi N; Jung TK; Miyake M; Sato YS; Kokawa H J Mech Behav Biomed Mater; 2014 Apr; 32():310-320. PubMed ID: 24378733 [TBL] [Abstract][Full Text] [Related]
17. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Zhang X; Zong H; Cui L; Fan X; Ding X; Sun J Sci Rep; 2017 Apr; 7():46360. PubMed ID: 28402321 [TBL] [Abstract][Full Text] [Related]
18. Interface stress transfer model and modulus parameter equivalence method for composite materials embedded with tensile pre-strain shape memory alloy fibers. Huang Y; Duan X; Wang J; Zhang Z; Shi Y; Huang B; Xu E PLoS One; 2024; 19(5):e0302729. PubMed ID: 38743667 [TBL] [Abstract][Full Text] [Related]
19. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices. Ozan S; Lin J; Li Y; Ipek R; Wen C Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950 [TBL] [Abstract][Full Text] [Related]
20. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Li SJ; Cui TC; Hao YL; Yang R Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]