These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34500996)

  • 1. Unexpected High Ductility of Fe40Al Alloys at Room Temperature.
    Siemiaszko D; Garwacka I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Film Properties of Bimodal Grain Size AA7075 Aluminium Alloy Prepared by Spark Plasma Sintering.
    Tian W; Li Z; Kang H; Cheng F; Chen F; Pang G
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum.
    Siemiaszko D; Kowalska B; Jóźwik P; Kwiatkowska M
    Materials (Basel); 2015 Mar; 8(4):1513-1525. PubMed ID: 28788015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Oct; 14():29-38. PubMed ID: 22963744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase.
    Cui N; Wu Q; Yan Z; Zhou H; Wang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.
    Vajpai SK; Sawangrat C; Yamaguchi O; Ciuca OP; Ameyama K
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1008-15. PubMed ID: 26478398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Powder Milling on Properties of SPS Compacted FeAl.
    Michalcová A; Özkan M; Mikula P; Marek I; Knaislová A; Kopeček J; Vojtěch D
    Molecules; 2020 May; 25(9):. PubMed ID: 32403351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process.
    Sjafrizal T; Dehghan-Manshadi A; Kent D; Yan M; Dargusch MS
    J Mech Behav Biomed Mater; 2020 Feb; 102():103518. PubMed ID: 31877522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.
    Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of pseudoelasticity and ductility of Beta III titanium alloy--application to orthodontic wires.
    Laheurte P; Eberhardt A; Philippe M; Deblock L
    Eur J Orthod; 2007 Feb; 29(1):8-13. PubMed ID: 16954181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for the determination of parameters in the sintering process of mixtures of the elemental powders Fe-Cr and Fe-Cr-Ni.
    Schneider TH; Biehl LV; das Neves EB; Medeiros JLB; de Souza J; do Amaral FAD
    MethodsX; 2019; 6():1919-1924. PubMed ID: 31516848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.
    Kim SH; Kim H; Kim NJ
    Nature; 2015 Feb; 518(7537):77-9. PubMed ID: 25652998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys.
    Ming K; Li L; Li Z; Bi X; Wang J
    Sci Adv; 2019 Dec; 5(12):eaay0639. PubMed ID: 31840073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.
    Wang Y; Lu Z; Zhang K; Zhang D
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Impurity Sulphur in the Ductility Trough of Austenitic Iron-Nickel Alloys.
    Christien F
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.
    Padmavathi C; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2012; 46(3):115-27. PubMed ID: 24432468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.
    Kim SY; Lee GY; Park GH; Kim HA; Lee AY; Scudino S; Prashanth KG; Kim DH; Eckert J; Lee MH
    Sci Rep; 2018 Jan; 8(1):1090. PubMed ID: 29348547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.