These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34501079)
21. Sorption-Related Characteristics of Surface Charred Spruce Wood. Kymäläinen M; Turunen H; Čermák P; Hautamäki S; Rautkari L Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30355998 [TBL] [Abstract][Full Text] [Related]
22. Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties. Moinuddin K; Razzaque QS; Thomas A Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932722 [TBL] [Abstract][Full Text] [Related]
23. Quantitative studies on charcoalification: Physical and chemical changes of charring wood. Li G; Gao L; Liu F; Qiu M; Dong G Fundam Res; 2024 Jan; 4(1):113-122. PubMed ID: 38933840 [TBL] [Abstract][Full Text] [Related]
24. Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls. Yin J; Yuan T; Lu Y; Song K; Li H; Zhao G; Yin Y Carbohydr Polym; 2017 Jan; 155():163-172. PubMed ID: 27702500 [TBL] [Abstract][Full Text] [Related]
25. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects. Raj PK J Hazard Mater; 2008 Sep; 157(2-3):247-59. PubMed ID: 18291577 [TBL] [Abstract][Full Text] [Related]
26. Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. Gori Y; Wehrens R; Greule M; Keppler F; Ziller L; La Porta N; Camin F Rapid Commun Mass Spectrom; 2013 Jan; 27(1):265-75. PubMed ID: 23239341 [TBL] [Abstract][Full Text] [Related]
27. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Agarwal UP Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135 [TBL] [Abstract][Full Text] [Related]
28. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Pizzo B; Pecoraro E; Alves A; Macchioni N; Rodrigues JC Talanta; 2015 Jan; 131():14-20. PubMed ID: 25281067 [TBL] [Abstract][Full Text] [Related]
29. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado. Andrus RA; Veblen TT; Harvey BJ; Hart SJ Ecol Appl; 2016 Apr; 26(3):700-11. PubMed ID: 27411244 [TBL] [Abstract][Full Text] [Related]
30. On the formation of lignin polysaccharide networks in Norway spruce. Oinonen P; Zhang L; Lawoko M; Henriksson G Phytochemistry; 2015 Mar; 111():177-84. PubMed ID: 25549980 [TBL] [Abstract][Full Text] [Related]
31. Degradation of Chemical Components of Thermally Modified Sikora A; Hájková K; Jurczyková T Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555291 [TBL] [Abstract][Full Text] [Related]
32. Comparison of [HSO Wang Z; Gräsvik J; Jönsson LJ; Winestrand S BMC Biotechnol; 2017 Nov; 17(1):82. PubMed ID: 29141617 [TBL] [Abstract][Full Text] [Related]
33. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Wu Y; Yao C; Hu Y; Zhu X; Qing Y; Wu Q Materials (Basel); 2014 Jan; 7(2):637-652. PubMed ID: 28788480 [TBL] [Abstract][Full Text] [Related]
34. Experimental Study of Oriented Strand Board Ignition by Radiant Heat Fluxes. Tureková I; Marková I; Ivanovičová M; Harangózo J Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652712 [TBL] [Abstract][Full Text] [Related]
35. Wood profiling by non-targeted liquid chromatography high-resolution mass spectrometry: Part 2, Detection of the geographical origin of spruce wood (Picea abies) by determination of metabolite pattern. Creydt M; Lautner S; Fromm J; Fischer M J Chromatogr A; 2022 Jan; 1663():462737. PubMed ID: 34968956 [TBL] [Abstract][Full Text] [Related]
36. Understanding the thermoplasticization mechanism of wood via esterification with fatty acids: A comparative study of the reactivity of cellulose, hemicelluloses and lignin. Sejati PS; Obounou Akong F; Fradet F; Gérardin P Carbohydr Polym; 2024 Jan; 324():121542. PubMed ID: 37985114 [TBL] [Abstract][Full Text] [Related]
37. Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor--effects of wood particle size. Krogell J; Korotkova E; Eränen K; Pranovich A; Salmi T; Murzin D; Willför S Bioresour Technol; 2013 Sep; 143():212-20. PubMed ID: 23792759 [TBL] [Abstract][Full Text] [Related]
38. Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers. Schmidt M; Gierlinger N; Schade U; Rogge T; Grunze M Biopolymers; 2006 Dec; 83(5):546-55. PubMed ID: 16897765 [TBL] [Abstract][Full Text] [Related]
39. Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials. Aqlibous A; Tretsiakova-McNally S; Fateh T Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244436 [TBL] [Abstract][Full Text] [Related]
40. Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: Experiments and modeling. Popova E; Chernov A; Maryandyshev P; Brillard A; Kehrli D; Trouvé G; Lyubov V; Brilhac JF Bioresour Technol; 2016 Oct; 218():1046-54. PubMed ID: 27455128 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]