BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34501088)

  • 1. Evaluation of PIRs Post-Fire Pull-Out Strength in Concrete Exposed to ISO 834-1 Fire.
    Abdelrahman Alhajj Chehade N; Lahouar A; Al-Mansouri O; Pinoteau N; Abate M; Remond S; Hoxha D
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Bond Behavior of High Strength Concrete Filled Steel Tube after Exposure to Elevated Temperatures and Cooled by Fire Hydrant.
    Chen Z; Tang J; Zhou X; Zhou J; Chen J
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation on Post-Fire Mechanical Properties of Glass Fiber-Reinforced Polymer Rebars.
    Thongchom C; Hu L; Sanit-In PK; Kontoni DN; Praphaphankul N; Tiprak K; Kongwat S
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fire Performance of FRP-RC Flexural Members: A Numerical Study.
    Duan D; Ouyang L; Gao W; Xu Q; Liu W; Yang J
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures.
    Ellis DS; Tabatabai H; Nabizadeh A
    Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural Behavior of a Precast Concrete Deck Connected with Headed GFRP Rebars and UHPC.
    Chin WJ; Park YH; Cho JR; Lee JY; Yoon YS
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32013084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bonding Behavior of Deformed Steel Rebars in Sustainable Concrete Containing both Fine and Coarse Recycled Aggregates.
    Kim SW; Park WS; Jang YI; Jang SJ; Yun HD
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28906441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Cooling Methods on the Residual Mechanical Behavior of Fire-Exposed Concrete: An Experimental Study.
    Carvalho EFT; Silva Neto JTD; Soares Junior PRR; Maciel PS; Fransozo HL; Bezerra ACDS; Gouveia AMC
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete.
    Rolland A; Benzarti K; Quiertant M; Chataigner S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic inspection of bond strength of steel-reinforced mortar after exposure to elevated temperatures.
    Chiang CH; Tsai CL; Kan YC
    Ultrasonics; 2000 Mar; 38(1-8):534-6. PubMed ID: 10829721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Fire Effects on Reinforced Concrete Members via Finite Element Analysis.
    Aliş B; Yazici C; Mehmet Özkal F
    ACS Omega; 2022 Aug; 7(30):26881-26893. PubMed ID: 35936405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Numerical Investigation of Bond-Slip Behavior of High-Strength Reinforced Concrete at Service Load.
    Dey A; Valiukas D; Jakubovskis R; Sokolov A; Kaklauskas G
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery Behavior of the Macro-Cracks in Elevated Temperature-Damaged Concrete after Post-Fire Curing.
    Li L; Chen Y; He C; Wang C; Zhang H; Wang Q; Liu Y; Zhang G
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An 18-Month Analysis of Bond Strength of Hot-Dip Galvanized Reinforcing Steel B500SP and S235JR+AR to Chloride Contaminated Concrete.
    Jaśniok M; Kołodziej J; Gromysz K
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Literature Review of Concrete Ability to Sustain Strength after Fire Exposure Based on the Heat Accumulation Factor.
    Pasztetnik M; Wróblewski R
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating residual compressive strength of post-fire concrete using Raman Spectroscopy.
    Kerr T; Vetter M; Gonzalez-Rodriguez J
    Forensic Sci Int; 2021 Aug; 325():110874. PubMed ID: 34171544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-Fire Characteristics of Concrete Beams Reinforced with Hybrid FRP Bars.
    Protchenko K; Szmigiera E
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Cement Mortar Incorporating Superabsorbent Polymer as a Passive Fire-Protective Layer.
    Jamnam S; Sua-Iam G; Maho B; Pianfuengfoo S; Sappakittipakorn M; Zhang H; Limkatanyu S; Sukontasukkul P
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting concrete thermal characteristics from temperature time history of RC column exposed to standard fire.
    Kim JJ; Youm KS; Reda Taha MM
    ScientificWorldJournal; 2014; 2014():242806. PubMed ID: 25180197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Thermophysical Parameters Involved in The Numerical Model to Predict the Temperature Field of Cast-In-Place Concrete Bridge Deck.
    Kuryłowicz-Cudowska A
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.