These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34501106)

  • 1. Evolution of Precipitated Phases during Creep of G115/Sanicro25 Dissimilar Steel Welded Joints.
    Yang M; Zhang Z; Li L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Long-Term Thermal Aging on Microstructure Evolution and Creep Deformation Behavior of a Novel 11Cr-3W-3Co Martensite Ferritic Steel.
    Zhao H; Han X; Wang M; Wang Z
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Microstructure in Welding Heat-Affected Zone of G115 Steel with the Different Content of Boron.
    Chen Z; Kou D; Chen Z; Yang F; Ma Y; Li Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission electron microscopy of precipitation in fine-grained heat-affected zone of Grade91 steel weld during creep exposure.
    Peansukmanee S; Phung-On I; Poopat B; Pearce JTH; Tsuda K; Nusen S; Chairuangsri T
    Micron; 2022 Apr; 155():103216. PubMed ID: 35123162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C.
    Xu L; He Y; Kang Y; Jung JS; Shin K
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Precipitates Evolution on Low Stress Creep Properties in P92 Heat-resistant Steel.
    Han H; Shen J; Xie J
    Sci Rep; 2018 Oct; 8(1):15411. PubMed ID: 30337691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural and Performance Analysis of TP304H/T22 Dissimilar Steel Welded Joints.
    Sun J; Wang T; Liu F; Zhang Z; Chen Y; Lin H; Liu H; Zhao X; Cheng X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Long-Term Aging on the Microstructural Evolution in a P91 Steel.
    Zhao H; Wang Z; Han X; Wang M
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissimilar Laser Welding of Austenitic Stainless Steel and Abrasion-Resistant Steel: Microstructural Evolution and Mechanical Properties Enhanced by Post-Weld Heat Treatment.
    Hietala M; Jaskari M; Ali M; Järvenpää A; Hamada A
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C.
    Yang L; Zhao F; Ding W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.
    Shi Y; Sun K; Cui S; Zeng M; Yi J; Shen X; Yi Y
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29361743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants.
    Abe F
    Sci Technol Adv Mater; 2008 Jan; 9(1):013002. PubMed ID: 27877920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and Mechanical Properties of Laser-Welded Joints between DP590 Dual-Phase Steel and 304 Stainless Steel with Preset Nickel Coating.
    Zhang H; Xu J; Hao D; Esmail OMAO
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Butter Layer Thickness on Microstructure and Mechanical Properties of Underwater Wet 16Mn/304L Dissimilar Welded Joint.
    Han K; Cao Y; Li H; Hu C; Wang Z; Liu D; Wang J; Zhu Q
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C.
    Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M
    J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding.
    Cui S; Pang S; Pang D; Zhang Z
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34205556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation of W-Rich Laves Phase Nanoparticles in Tempered Martensite Ferritic Steel During Long-Term Aging at Elevated Temperature.
    Kim C
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4489-4493. PubMed ID: 31968503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitates and Particles Coarsening of 9Cr-1.7W-0.4Mo-Co Ferritic Heat-Resistant Steel after Isothermal Aging.
    Gao Q; Zhang Y; Zhang H; Li H; Qu F; Han J; Lu C; Wu B; Lu Y; Ma Y
    Sci Rep; 2017 Jul; 7(1):5859. PubMed ID: 28725002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Reversed Austenite Behavior in Determining Microstructure and Toughness of Advanced Medium Mn Steel by Welding Thermal Cycle.
    Chen Y; Wang H; Cai H; Li J; Chen Y
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Microstructure Evolution and Tungsten Content Optimization of 9Cr-3W-3Co Steel.
    Ma L; Wang Y; Di G
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30355972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.