These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34501130)

  • 21. Influence of Selective Laser Melting Machine Source on the Dynamic Properties of AlSi10Mg Alloy.
    Amir B; Samuha S; Sadot O
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30965620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation on the Microstructure and Mechanical Properties of CNTs-AlSi10Mg Composites Fabricated by Selective Laser Melting.
    Luo S; Li R; He P; Yue H; Gu J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33572438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties Evaluations of Topology Optimized Functionally Graded Lattice Structures Fabricated by Selective Laser Melting.
    Xu Y; Han G; Huang G; Li T; Xia J; Guo D
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads.
    Ashab ASMA; Ruan D; Lu G; Bhuiyan AA
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel.
    Qiu C; Kindi MA; Aladawi AS; Hatmi IA
    Sci Rep; 2018 May; 8(1):7785. PubMed ID: 29773819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study.
    Ziętala M; Durejko T; Panowicz R; Konarzewski M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compressive Properties of Al-Si Alloy Lattice Structures with Three Different Unit Cells Fabricated via Laser Powder Bed Fusion.
    Liu X; Sekizawa K; Suzuki A; Takata N; Kobashi M; Yamada T
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A New Type of Hierarchical Honeycomb in-Plane Impact Study.
    Song H; Zhang C; Wang P; Meng L; Wang Z
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Absorbent Foam Filling on Mechanical Behaviors of 3D-Printed Honeycombs.
    Yan L; Zhu K; Zhang Y; Zhang C; Zheng X
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32927697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ductile titanium alloy with low Poisson's ratio.
    Hao YL; Li SJ; Sun BB; Sui ML; Yang R
    Phys Rev Lett; 2007 May; 98(21):216405. PubMed ID: 17677794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexural Response of Degraded Polyurethane Foam Core Sandwich Beam with Initial Crack between Facesheet and Core.
    Dhaliwal GS; Newaz GM
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting.
    Deng Y; Mao Z; Yang N; Niu X; Lu X
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous compression behaviors of selective laser melting Ti-6Al-4V alloy with cuboctahedron cellular structures.
    Chen JK; Wu MW; Cheng TL; Chiang PH
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():781-788. PubMed ID: 30948115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influences of Horizontal and Vertical Build Orientations and Post-Fabrication Processes on the Fatigue Behavior of Stainless Steel 316L Produced by Selective Laser Melting.
    Wood P; Libura T; Kowalewski ZL; Williams G; Serjouei A
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical Performance of Lightweight-Designed Honeycomb Structures Fabricated Using Multijet Fusion Additive Manufacturing Technology.
    Nazir A; Arshad AB; Lin SC; Jeng JY
    3D Print Addit Manuf; 2022 Aug; 9(4):311-325. PubMed ID: 36660228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.
    Trevisan F; Calignano F; Lorusso M; Pakkanen J; Aversa A; Ambrosio EP; Lombardi M; Fino P; Manfredi D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting the Role of Pores on the Stress State Dependent Fracture Behavior of Additively Manufactured Low and High Ductility Metals.
    Wilson-Heid AE; Furton ET; Beese AM
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.
    Ma Q; Cheng H; Jang KI; Luan H; Hwang KC; Rogers JA; Huang Y; Zhang Y
    J Mech Phys Solids; 2016 May; 90():179-202. PubMed ID: 27087704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.