These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34501169)

  • 1. Energy Gaps in BN/GNRs Planar Heterostructure.
    Guan J; Xu L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride.
    Wang HS; Chen L; Elibol K; He L; Wang H; Chen C; Jiang C; Li C; Wu T; Cong CX; Pennycook TJ; Argentero G; Zhang D; Watanabe K; Taniguchi T; Wei W; Yuan Q; Meyer JC; Xie X
    Nat Mater; 2021 Feb; 20(2):202-207. PubMed ID: 32958881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy gaps and stark effect in boron nitride nanoribbons.
    Park CH; Louie SG
    Nano Lett; 2008 Aug; 8(8):2200-3. PubMed ID: 18593205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smooth gap tuning strategy for cove-type graphene nanoribbons.
    de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH
    RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field.
    Ilyasov VV; Meshi BC; Nguyen VC; Ershov IV; Nguyen DC
    J Chem Phys; 2014 Jul; 141(1):014708. PubMed ID: 25005304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence.
    Ma C; Xiao Z; Puretzky AA; Wang H; Mohsin A; Huang J; Liang L; Luo Y; Lawrie BJ; Gu G; Lu W; Hong K; Bernholc J; Li AP
    ACS Nano; 2020 Apr; 14(4):5090-5098. PubMed ID: 32283017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable electronic properties of ultra-thin boron-carbon-nitrogen heteronanotubes for various compositions.
    Wang Y; Huang G; Zhang J; Shao Q
    J Mol Model; 2014 Aug; 20(8):2371. PubMed ID: 25031080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups.
    Tian X; Gu J; Xu JB
    J Chem Phys; 2014 Jan; 140(4):044712. PubMed ID: 25669572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles.
    Zhao X; Li L; Zhao M
    J Phys Condens Matter; 2014 Mar; 26(9):095002. PubMed ID: 24521541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches.
    Chen L; He L; Wang HS; Wang H; Tang S; Cong C; Xie H; Li L; Xia H; Li T; Wu T; Zhang D; Deng L; Yu T; Xie X; Jiang M
    Nat Commun; 2017 Mar; 8():14703. PubMed ID: 28276532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme.
    Sattar A; Moazzam U; Bashir AI; Reza A; Latif H; Usman A; Amjad RJ; Mubshrah A; Nasir A
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33601353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evolution of in-plane hybrid graphene/hexagonal boron nitride heterostructure upon heating.
    Nguyen HTT
    J Mol Graph Model; 2023 Dec; 125():108579. PubMed ID: 37549497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons.
    Zhang N; Yang Z; Zhang Z; Wang J
    Chemphyschem; 2023 Dec; 24(24):e202300348. PubMed ID: 37731169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Monochromatic Electron Emission from Graphene/Hexagonal Boron Nitride/Si Heterostructure.
    Murakami K; Igari T; Mitsuishi K; Nagao M; Sasaki M; Yamada Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4061-4067. PubMed ID: 31880426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.