These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34501270)

  • 1. Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning.
    Sayed M; Riaño D; Villar J
    J Clin Med; 2021 Aug; 10(17):. PubMed ID: 34501270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.
    Wang Z; Zhang L; Huang T; Yang R; Cheng H; Wang H; Yin H; Lyu J
    Heart Lung; 2023; 58():74-81. PubMed ID: 36423504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel criteria to classify ARDS severity using a machine learning approach.
    Sayed M; Riaño D; Villar J
    Crit Care; 2021 Apr; 25(1):150. PubMed ID: 33879214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.
    Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y
    Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the Length of Mechanical Ventilation in Acute Respiratory Disease Syndrome Using Machine Learning: The PIONEER Study.
    Villar J; González-Martín JM; Fernández C; Soler JA; Ambrós A; Pita-García L; Fernández L; Ferrando C; Arocas B; González-Vaquero M; Añón JM; González-Higueras E; Parrilla D; Vidal A; Fernández MM; Rodríguez-Suárez P; Fernández RL; Gómez-Bentolila E; Burns KEA; Szakmany T; Steyerberg EW; The PredictION Of Duration Of mEchanical vEntilation In Ards Pioneer Network
    J Clin Med; 2024 Mar; 13(6):. PubMed ID: 38542033
    [No Abstract]   [Full Text] [Related]  

  • 6. Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.
    Wang R; Cai L; Zhang J; He M; Xu J
    Medicina (Kaunas); 2023 Jan; 59(1):. PubMed ID: 36676795
    [No Abstract]   [Full Text] [Related]  

  • 7. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury.
    Huang S; Teng Y; Du J; Zhou X; Duan F; Feng C
    Aust Crit Care; 2023 Jul; 36(4):604-612. PubMed ID: 35842332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS).
    Le S; Pellegrini E; Green-Saxena A; Summers C; Hoffman J; Calvert J; Das R
    J Crit Care; 2020 Dec; 60():96-102. PubMed ID: 32777759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.
    Wei S; Zhang Y; Dong H; Chen Y; Wang X; Zhu X; Zhang G; Guo S
    BMC Pulm Med; 2023 Oct; 23(1):370. PubMed ID: 37789305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of different transpulmonary pressures guided mechanical ventilation on respiratory and hemodynamics of patients with ARDS: a prospective randomized controlled trial].
    Li J; Luo Z; Li X; Huang Z; Han J; Li Z; Zhou Z; Chen H
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Jan; 29(1):39-44. PubMed ID: 28459402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study.
    Villar J; González-Martín JM; Hernández-González J; Armengol MA; Fernández C; Martín-Rodríguez C; Mosteiro F; Martínez D; Sánchez-Ballesteros J; Ferrando C; Domínguez-Berrot AM; Añón JM; Parra L; Montiel R; Solano R; Robaglia D; Rodríguez-Suárez P; Gómez-Bentolila E; Fernández RL; Szakmany T; Steyerberg EW; Slutsky AS;
    Crit Care Med; 2023 Dec; 51(12):1638-1649. PubMed ID: 37651262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients.
    Lin S; Yang M; Liu C; Wang Z; Long X
    Int J Med Inform; 2024 Jun; 186():105397. PubMed ID: 38507979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a machine-learning model for prediction of hypoxemia after extubation in intensive care units.
    Xia M; Jin C; Cao S; Pei B; Wang J; Xu T; Jiang H
    Ann Transl Med; 2022 May; 10(10):577. PubMed ID: 35722375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk factors for the development of acute respiratory distress syndrome in mechanically ventilated adults in Peru: a multicenter observational study.
    Gupta E; Hossen S; Grigsby MR; Herrera P; Roldan R; Paz E; Jaymez AA; Chirinos EE; Portugal J; Quispe R; Brower RG; Checkley W;
    Crit Care; 2019 Dec; 23(1):398. PubMed ID: 31810487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database.
    Zhu Y; Zhang J; Wang G; Yao R; Ren C; Chen G; Jin X; Guo J; Liu S; Zheng H; Chen Y; Guo Q; Li L; Du B; Xi X; Li W; Huang H; Li Y; Yu Q
    Front Med (Lausanne); 2021; 8():662340. PubMed ID: 34277655
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicting Successful Weaning from Mechanical Ventilation by Reduction in Positive End-expiratory Pressure Level Using Machine Learning.
    Sheikhalishahi S; Kaspar M; Zaghdoudi S; Sander J; Simon P; Geisler BP; Lange D; Hinske LC
    PLOS Digit Health; 2024 Mar; 3(3):e0000478. PubMed ID: 38536802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis.
    Zeng Z; Yao S; Zheng J; Gong X
    BioData Min; 2021 Aug; 14(1):40. PubMed ID: 34399809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit.
    Cheng KH; Tan MC; Chang YJ; Lin CW; Lin YH; Chang TM; Kuo LK
    Medicina (Kaunas); 2022 Mar; 58(3):. PubMed ID: 35334536
    [No Abstract]   [Full Text] [Related]  

  • 19. [Dynamic measurement of volume of atelectasis area in the evaluation of the prognosis of patients with moderate-to-severe acute respiratory distress syndrome].
    Lu X; Han Y; Gao X; Wang F; Xu L
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Sep; 32(9):1056-1060. PubMed ID: 33081890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mortality Prediction Using SaO
    Patel S; Singh G; Zarbiv S; Ghiassi K; Rachoin JS
    Crit Care Res Pract; 2021; 2021():6672603. PubMed ID: 34790417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.