BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34501382)

  • 21. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases.
    Papp D; Hernandez LA; Mai TA; Haanen TJ; O'Donnell MA; Duran AT; Hernandez SM; Narvanto JE; Arguello B; Onwukwe MO; Kolar K; Mirkin SM; Kim JC
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG) x (CAGG) repeat.
    Edwards SF; Sirito M; Krahe R; Sinden RR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3270-5. PubMed ID: 19218442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene.
    Sun C; Van Ghelue M; Tranebjærg L; Thyssen F; Nilssen Ø; Torbergsen T
    Clin Genet; 2011 Dec; 80(6):574-80. PubMed ID: 21204798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ancestral Origin of the First Indian Families with Myotonic Dystrophy Type 2.
    Damen M; Schijvenaars M; Schimmel-Naber M; Groothuismink J; Coenen M; Tieleman A
    J Neuromuscul Dis; 2021; 8(4):715-722. PubMed ID: 34024776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The GAA triplet-repeat sequence in Friedreich ataxia shows a high level of somatic instability in vivo, with a significant predilection for large contractions.
    Sharma R; Bhatti S; Gomez M; Clark RM; Murray C; Ashizawa T; Bidichandani SI
    Hum Mol Genet; 2002 Sep; 11(18):2175-87. PubMed ID: 12189170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A long PCR-based molecular protocol for detecting normal and expanded ZNF9 alleles in myotonic dystrophy type 2.
    Bonifazi E; Vallo L; Giardina E; Botta A; Novelli G
    Diagn Mol Pathol; 2004 Sep; 13(3):164-6. PubMed ID: 15322428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instability of a premutation allele in homozygous patients with myotonic dystrophy type 1.
    Abbruzzese C; Costanzi Porrini S; Mariani B; Gould FK; McAbney JP; Monckton DG; Ashizawa T; Giacanelli M
    Ann Neurol; 2002 Oct; 52(4):435-41. PubMed ID: 12325072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myotonic dystrophy: emerging mechanisms for DM1 and DM2.
    Cho DH; Tapscott SJ
    Biochim Biophys Acta; 2007 Feb; 1772(2):195-204. PubMed ID: 16876389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency and stability of the myotonic dystrophy type 1 premutation.
    Martorell L; Monckton DG; Sanchez A; Lopez De Munain A; Baiget M
    Neurology; 2001 Feb; 56(3):328-35. PubMed ID: 11171897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Child Neurology: Maternal Transmission of Congenital Myotonic Dystrophy Type 2: Case Report.
    Tieleman AA; Damen MJ; Verrips A; Roelofs M; Kamsteeg EJ; Voermans NC
    Neurology; 2022 Dec; 99(24):1112-1114. PubMed ID: 36180234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutagenic stress modulates the dynamics of CTG repeat instability associated with myotonic dystrophy type 1.
    Piñeiro E; Fernàndez-López L; Gamez J; Marcos R; Surrallés J; Velázquez A
    Nucleic Acids Res; 2003 Dec; 31(23):6733-40. PubMed ID: 14627806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into the genetic instability in CCTG repeats.
    Guo P; Lam SL
    FEBS Lett; 2015 Oct; 589(20 Pt B):3058-63. PubMed ID: 26384951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis.
    Santoro M; Masciullo M; Silvestri G; Novelli G; Botta A
    Clin Genet; 2017 Oct; 92(4):355-364. PubMed ID: 27991661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myotonic dystrophy types 1 and 2.
    Ashizawa T; Sarkar PS
    Handb Clin Neurol; 2011; 101():193-237. PubMed ID: 21496635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms.
    Meola G; Cardani R
    Biochim Biophys Acta; 2015 Apr; 1852(4):594-606. PubMed ID: 24882752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene.
    Musova Z; Mazanec R; Krepelova A; Ehler E; Vales J; Jaklova R; Prochazka T; Koukal P; Marikova T; Kraus J; Havlovicova M; Sedlacek Z
    Am J Med Genet A; 2009 Jul; 149A(7):1365-74. PubMed ID: 19514047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parental repeat length instability in myotonic dystrophy type 1 pre- and protomutations.
    Joosten IBT; Hellebrekers DMEI; de Greef BTA; Smeets HJM; de Die-Smulders CEM; Faber CG; Gerrits MM
    Eur J Hum Genet; 2020 Jul; 28(7):956-962. PubMed ID: 32203199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a single nucleotide polymorphism in the ZNF9 gene and analysis of association with myotonic dystrophy type II (DM2) in the Italian population.
    Vallo L; Bonifazi E; Borgiani P; Novelli G; Botta A
    Mol Cell Probes; 2005 Feb; 19(1):71-4. PubMed ID: 15652222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions.
    Pešović J; Perić S; Brkušanin M; Brajušković G; Rakočević-Stojanović V; Savić-Pavićević D
    Neurogenetics; 2017 Dec; 18(4):207-218. PubMed ID: 28942489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myotonic dystrophy type 2 and related myotonic disorders.
    Meola G; Moxley RT
    J Neurol; 2004 Oct; 251(10):1173-82. PubMed ID: 15503094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.