These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 34502020)
1. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Kumar M; Kumar Patel M; Kumar N; Bajpai AB; Siddique KHM Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502020 [TBL] [Abstract][Full Text] [Related]
2. An Integrated Framework for Drought Stress in Plants. Cao Y; Yang W; Ma J; Cheng Z; Zhang X; Liu X; Wu X; Zhang J Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273296 [TBL] [Abstract][Full Text] [Related]
3. miRNAs: Primary modulators of plant drought tolerance. Liang Y; Yang X; Wang C; Wang Y J Plant Physiol; 2024 Oct; 301():154313. PubMed ID: 38991233 [TBL] [Abstract][Full Text] [Related]
4. Molecular Insight of Plants Response to Drought Stress: Perspectives and New Insights towards Food Security. Marques I; Hu H Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732211 [TBL] [Abstract][Full Text] [Related]
5. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Wang X; Cai X; Xu C; Wang Q; Dai S Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27763546 [TBL] [Abstract][Full Text] [Related]
6. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Furlan AL; Bianucci E; Castro S; Dietz KJ Plant Sci; 2017 Oct; 263():12-22. PubMed ID: 28818367 [TBL] [Abstract][Full Text] [Related]
7. Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. Sun J; Qiu C; Ding Y; Wang Y; Sun L; Fan K; Gai Z; Dong G; Wang J; Li X; Song L; Ding Z BMC Genomics; 2020 Jun; 21(1):411. PubMed ID: 32552744 [TBL] [Abstract][Full Text] [Related]
8. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Ali S; Khan N Microbiol Res; 2021 Aug; 249():126771. PubMed ID: 33930840 [TBL] [Abstract][Full Text] [Related]
9. Role of microRNAs in plant drought tolerance. Ferdous J; Hussain SS; Shi BJ Plant Biotechnol J; 2015 Apr; 13(3):293-305. PubMed ID: 25583362 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles as potential hallmarks of drought stress tolerance in plants. Kandhol N; Jain M; Tripathi DK Physiol Plant; 2022 Mar; 174(2):e13665. PubMed ID: 35279848 [TBL] [Abstract][Full Text] [Related]
11. The metabolic response to drought. Fàbregas N; Fernie AR J Exp Bot; 2019 Feb; 70(4):1077-1085. PubMed ID: 30726961 [TBL] [Abstract][Full Text] [Related]
12. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Zhang JY; Cruz DE Carvalho MH; Torres-Jerez I; Kang Y; Allen SN; Huhman DV; Tang Y; Murray J; Sumner LW; Udvardi MK Plant Cell Environ; 2014 Nov; 37(11):2553-76. PubMed ID: 24661137 [TBL] [Abstract][Full Text] [Related]
13. Spatially Resolved Metabolomics and Lipidomics Reveal Salinity and Drought-Tolerant Mechanisms of Cottonseeds. Liu B; Wang X; Li K; Cai Z J Agric Food Chem; 2021 Jul; 69(28):8028-8037. PubMed ID: 34253015 [TBL] [Abstract][Full Text] [Related]
14. Circular drought-hardening confers drought tolerance via modulation of the antioxidant defense system, osmoregulation, and gene expression in tobacco. Khan R; Ma X; Zhang J; Wu X; Iqbal A; Wu Y; Zhou L; Wang S Physiol Plant; 2021 Jun; 172(2):1073-1088. PubMed ID: 33755204 [TBL] [Abstract][Full Text] [Related]
15. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Mubarik MS; Khan SH; Sajjad M; Raza A; Hafeez MB; Yasmeen T; Rizwan M; Ali S; Arif MS Physiol Plant; 2021 Jun; 172(2):1269-1290. PubMed ID: 33421147 [TBL] [Abstract][Full Text] [Related]
16. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Jogawat A; Yadav B; Chhaya ; Lakra N; Singh AK; Narayan OP Physiol Plant; 2021 Jun; 172(2):1106-1132. PubMed ID: 33421146 [TBL] [Abstract][Full Text] [Related]
17. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Per TS; Khan NA; Reddy PS; Masood A; Hasanuzzaman M; Khan MIR; Anjum NA Plant Physiol Biochem; 2017 Jun; 115():126-140. PubMed ID: 28364709 [TBL] [Abstract][Full Text] [Related]
18. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
20. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Shao HB; Chu LY; Jaleel CA; Manivannan P; Panneerselvam R; Shao MA Crit Rev Biotechnol; 2009; 29(2):131-51. PubMed ID: 19412828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]