These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34502067)

  • 1. Systematical Screening of Intracellular Protein Targets of Polyphemusin-I Using
    Shah P; Chen CS
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.
    Ho YH; Shah P; Chen YW; Chen CS
    Mol Cell Proteomics; 2016 Jun; 15(6):1837-47. PubMed ID: 26902206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proteome targets of intracellular targeting antimicrobial peptides.
    Shah P; Hsiao FS; Ho YH; Chen CS
    Proteomics; 2016 Apr; 16(8):1225-37. PubMed ID: 26648572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Screening of Penetratin's Protein Targets by Yeast Proteome Microarrays.
    Shah P; Chen CS
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays.
    Shah P; Wu WS; Chen CS
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31466342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Identification of Protein Targets of Sub5 Using
    Shah P; Chen CS
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33451135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.
    Tu YH; Ho YH; Chuang YC; Chen PC; Chen CS
    PLoS One; 2011; 6(12):e28197. PubMed ID: 22164243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli.
    Tawfik MM; Bertelsen M; Abdel-Rahman MA; Strong PN; Miller K
    mSphere; 2021 May; 6(3):. PubMed ID: 33980680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers.
    Zhang L; Scott MG; Yan H; Mayer LD; Hancock RE
    Biochemistry; 2000 Nov; 39(47):14504-14. PubMed ID: 11087404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant expression of the antimicrobial peptide polyphemusin and its activity against the protozoan oyster pathogen Perkinsus marinus.
    Pierce JC; Maloy WL; Salvador L; Dungan CF
    Mol Mar Biol Biotechnol; 1997 Sep; 6(3):248-59. PubMed ID: 9284563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antimicrobial peptide polyphemusin localizes to the cytoplasm of Escherichia coli following treatment.
    Powers JP; Martin MM; Goosney DL; Hancock RE
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1522-4. PubMed ID: 16569873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.
    Jhong JH; Chi YH; Li WC; Lin TH; Huang KY; Lee TY
    Nucleic Acids Res; 2019 Jan; 47(D1):D285-D297. PubMed ID: 30380085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxic Potential of the Novel Horseshoe Crab Peptide Polyphemusin III.
    Marggraf MB; Panteleev PV; Emelianova AA; Sorokin MI; Bolosov IA; Buzdin AA; Kuzmin DV; Ovchinnikova TV
    Mar Drugs; 2018 Nov; 16(12):. PubMed ID: 30486233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.
    Falanga A; Lombardi L; Franci G; Vitiello M; Iovene MR; Morelli G; Galdiero M; Galdiero S
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mechanism of Killing by the Proline-Rich Peptide Bac7(1-35) against Clinical Strains of Pseudomonas aeruginosa Differs from That against Other Gram-Negative Bacteria.
    Runti G; Benincasa M; Giuffrida G; Devescovi G; Venturi V; Gennaro R; Scocchi M
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28137800
    [No Abstract]   [Full Text] [Related]  

  • 16. Modified horseshoe crab peptides target and kill bacteria inside host cells.
    Amiss AS; von Pein JB; Webb JR; Condon ND; Harvey PJ; Phan MD; Schembri MA; Currie BJ; Sweet MJ; Craik DJ; Kapetanovic R; Henriques ST; Lawrence N
    Cell Mol Life Sci; 2021 Dec; 79(1):38. PubMed ID: 34971427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB.
    Ho YH; Sung TC; Chen CS
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.014720. PubMed ID: 22138548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the yjiL-mdtM Gene Cluster on the Antibacterial Activity of Proline-Rich Antimicrobial Peptides Overcoming Escherichia coli Resistance Induced by the Missing SbmA Transporter System.
    Krizsan A; Knappe D; Hoffmann R
    Antimicrob Agents Chemother; 2015 Oct; 59(10):5992-8. PubMed ID: 26169420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptides: Amphibian Host Defense Peptides.
    Patocka J; Nepovimova E; Klimova B; Wu Q; Kuca K
    Curr Med Chem; 2019; 26(32):5924-5946. PubMed ID: 30009702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.
    Buri MV; Torquato HFV; Barros CC; Ide JS; Miranda A; Paredes-Gamero EJ
    J Cell Biochem; 2017 Jul; 118(7):1764-1773. PubMed ID: 27987312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.