BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34502099)

  • 1. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases.
    Matyushin DD; Sholokhova AY; Buryak AK
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep convolutional neural network for the estimation of gas chromatographic retention indices.
    Matyushin DD; Sholokhova AY; Buryak AK
    J Chromatogr A; 2019 Dec; 1607():460395. PubMed ID: 31405570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of isothermal gas chromatographic Kováts retention indices.
    Anjum A; Liigand J; Milford R; Gautam V; Wishart DS
    J Chromatogr A; 2023 Aug; 1705():464176. PubMed ID: 37413909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants.
    Veenaas C; Linusson A; Haglund P
    Anal Bioanal Chem; 2018 Dec; 410(30):7931-7941. PubMed ID: 30361914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of gas chromatographic retention indices of polychlorinated dibenzothiophenes on non-polar columns.
    Sielex K; Andersson JT
    J Chromatogr A; 2000 Jan; 866(1):105-20. PubMed ID: 10681014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on non-polar stationary phases.
    Pavlovskii AA; Héberger K; Zenkevich IG
    J Chromatogr A; 2016 May; 1445():126-34. PubMed ID: 27062719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds.
    Héberger K; Zenkevich IG
    J Chromatogr A; 2010 Apr; 1217(17):2895-902. PubMed ID: 20236649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of topological descriptors to model the retention of polychlorinated biphenyls in different gas chromatography stationary phases, including ionic liquid-based columns.
    Escobar-Arnanz J; Sanz ML; Ros M; Sanz J; Ramos L
    J Chromatogr A; 2020 Apr; 1616():460844. PubMed ID: 31952814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive two-dimensional gas chromatography in the analysis of volatile samples of natural origin: a multidisciplinary approach to evaluate the influence of second dimension column coated with mixed stationary phases on system orthogonality.
    Cordero C; Rubiolo P; Sgorbini B; Galli M; Bicchi C
    J Chromatogr A; 2006 Nov; 1132(1-2):268-79. PubMed ID: 16919643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Correlation analysis of structures and gas chromatographic retention indices of aliphatic alcohols].
    Qin Z; Feng C
    Se Pu; 2004 Jul; 22(4):452-5. PubMed ID: 15709433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of topological and linear free energy-related parameters for the prediction of GC retention indices.
    Buydens L; Coomans D; Vanbelle M; Massart DL; Vanden Driessche R
    J Pharm Sci; 1983 Nov; 72(11):1327-9. PubMed ID: 6644596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Kováts Retention Indices Using Graph Neural Networks.
    Qu C; Schneider BI; Kearsley AJ; Keyrouz W; Allison TC
    J Chromatogr A; 2021 Jun; 1646():462100. PubMed ID: 33892256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster and principal component analysis for Kováts' retention indices on apolar and polar stationary phases in gas chromatography.
    Dallos A; Ngo HS; Kresz R; Héberger K
    J Chromatogr A; 2008 Jan; 1177(1):175-82. PubMed ID: 18067899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction for gas chromatographic retention indices of saturated esters on stationary phases of different polarity.
    Wang Y; Yao X; Zhang X; Zhang R; Liu M; Hu Z; Fan B
    Talanta; 2002 Jun; 57(4):641-52. PubMed ID: 18968665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners.
    Wang Y; Li A; Liu H; Zhang Q; Ma W; Song W; Jiang G
    J Chromatogr A; 2006 Jan; 1103(2):314-28. PubMed ID: 16352309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography.
    Poole CF
    J Chromatogr A; 2020 Aug; 1626():461308. PubMed ID: 32797813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepReI: Deep learning-based gas chromatographic retention index predictor.
    Vrzal T; Malečková M; Olšovská J
    Anal Chim Acta; 2021 Feb; 1147():64-71. PubMed ID: 33485586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.