These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34502110)

  • 1. High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers.
    Drees A; Fischer M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Aptamer Discovery Technologies.
    Wu D; Gordon CKL; Shin JH; Eisenstein M; Soh HT
    Acc Chem Res; 2022 Mar; 55(5):685-695. PubMed ID: 35130439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative selection and parallel characterization of aptamers.
    Cho M; Soo Oh S; Nie J; Stewart R; Eisenstein M; Chambers J; Marth JD; Walker F; Thomson JA; Soh HT
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18460-5. PubMed ID: 24167271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing.
    Valenzano S; De Girolamo A; DeRosa MC; McKeague M; Schena R; Catucci L; Pascale M
    ACS Comb Sci; 2016 Jun; 18(6):302-13. PubMed ID: 27057927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing.
    Cho M; Xiao Y; Nie J; Stewart R; Csordas AT; Oh SS; Thomson JA; Soh HT
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15373-8. PubMed ID: 20705898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HAPIscreen, a method for high-throughput aptamer identification.
    Dausse E; Taouji S; Evadé L; Di Primo C; Chevet E; Toulmé JJ
    J Nanobiotechnology; 2011 Jun; 9():25. PubMed ID: 21639912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Aptamers by High-Throughput Sequencing of Doped-SELEX.
    Ducongé F
    Methods Mol Biol; 2023; 2570():85-102. PubMed ID: 36156776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-step selection of bivalent aptamers validated by comparison with SELEX using high-throughput sequencing.
    Wilson R; Bourne C; Chaudhuri RR; Gregory R; Kenny J; Cossins A
    PLoS One; 2014; 9(6):e100572. PubMed ID: 24963654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Round DNA Aptamer Selection by Combined Use of Capillary Electrophoresis and Next Generation Sequencing: An Aptaomics Approach for Identifying Unique Functional Protein-Binding DNA Aptamers.
    Saito S; Sakamoto T; Tanaka N; Watanabe R; Kamimura T; Ota K; Riley KR; Yoshimoto K; Tasaki-Handa Y; Shibukawa M
    Chemistry; 2021 Jul; 27(39):10058-10067. PubMed ID: 33991022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput binding characterization of RNA aptamer selections using a microplate-based multiplex microcolumn device.
    Szeto K; Reinholt SJ; Duarte FM; Pagano JM; Ozer A; Yao L; Lis JT; Craighead HG
    Anal Bioanal Chem; 2014 Apr; 406(11):2727-32. PubMed ID: 24553662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of DNA Signaling Aptamer from Multiple Candidates Obtained from SELEX with Next-generation Sequencing.
    Yoshitomi T; Wayama F; Kimura K; Wakui K; Furusho H; Yoshimoto K
    Anal Sci; 2019; 35(1):113-116. PubMed ID: 30626772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining capillary electrophoresis and next-generation sequencing for aptamer selection.
    Riley KR; Gagliano J; Xiao J; Libby K; Saito S; Yu G; Cubicciotti R; Macosko J; Colyer CL; Guthold M; Bonin K
    Anal Bioanal Chem; 2015 Feb; 407(6):1527-32. PubMed ID: 25579462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput methods in aptamer discovery and analysis.
    Cole KH; Lupták A
    Methods Enzymol; 2019; 621():329-346. PubMed ID: 31128787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology.
    Komarova N; Barkova D; Kuznetsov A
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking the emergence of high affinity aptamers for rhVEGF165 during capillary electrophoresis-systematic evolution of ligands by exponential enrichment using high throughput sequencing.
    Jing M; Bowser MT
    Anal Chem; 2013 Nov; 85(22):10761-70. PubMed ID: 24125636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Selection of New DNA Aptamers for Human Vascular Endothelial Growth Factor 165.
    Manochehry S; Gu J; McConnell EM; Salena BJ; Li Y
    Chembiochem; 2020 Jul; 21(14):2029-2036. PubMed ID: 32180322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing as input for chemometrics in differential sensing routines.
    Goodwin S; Gade AM; Byrom M; Herrera B; Spears C; Anslyn EV; Ellington AD
    Angew Chem Int Ed Engl; 2015 May; 54(21):6339-42. PubMed ID: 25826754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.