BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34502124)

  • 1. Bioactivity and Antibacterial Behaviors of Nanostructured Lithium-Doped Hydroxyapatite for Bone Scaffold Application.
    Keikhosravani P; Maleki-Ghaleh H; Kahaie Khosrowshahi A; Bodaghi M; Dargahi Z; Kavanlouei M; Khademi-Azandehi P; Fallah A; Beygi-Khosrowshahi Y; Siadati MH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect.
    Luo Y; Li D; Zhao J; Yang Z; Kang P
    Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doxorubicin loaded cerium substituted hydroxyapatite nanoparticles: A promising new therapeutic approach for bone regeneration, doxorubicin delivery, and cancer treatment.
    Moaness M; Mousa SM; Abo-Elfadl MT; El-Bassyouni GT
    Int J Pharm; 2024 Apr; 654():123969. PubMed ID: 38442795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.
    Januariyasa IK; Ana ID; Yusuf Y
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110347. PubMed ID: 31761152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release.
    Chandra VS; Baskar G; Suganthi RV; Elayaraja K; Joshy MI; Beaula WS; Mythili R; Venkatraman G; Kalkura SN
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1200-10. PubMed ID: 22316071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering.
    Maleki-Ghaleh H; Siadati MH; Fallah A; Koc B; Kavanlouei M; Khademi-Azandehi P; Moradpur-Tari E; Omidi Y; Barar J; Beygi-Khosrowshahi Y; Kumar AP; Adibkia K
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration.
    Li D; Huifang L; Zhao J; Yang Z; Xie X; Wei Z; Li D; Kang P
    Biomed Mater; 2018 Jun; 13(5):055002. PubMed ID: 29775181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr.
    Moghanian A; Firoozi S; Tahriri M; Sedghi A
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():349-360. PubMed ID: 30033264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering.
    Heidari F; Tabatabaei FS; Razavi M; Lari RB; Tavangar M; Romanos GE; Vashaee D; Tayebi L
    J Mater Sci Mater Med; 2020 Sep; 31(10):85. PubMed ID: 33000320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO
    Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity.
    Benedini L; Laiuppa J; Santillán G; Baldini M; Messina P
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111101. PubMed ID: 32600705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment.
    Dayaghi E; Bakhsheshi-Rad HR; Hamzah E; Akhavan-Farid A; Ismail AF; Aziz M; Abdolahi E
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():53-65. PubMed ID: 31147024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zn-HA/Bi-HA biphasic coatings on Titanium: Fabrication, characterization, antibacterial and biological activity.
    Bi Q; Song X; Chen Y; Zheng Y; Yin P; Lei T
    Colloids Surf B Biointerfaces; 2020 May; 189():110813. PubMed ID: 32018139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites.
    Martínez-Sanmiguel JJ; G Zarate-Triviño D; Hernandez-Delgadillo R; Giraldo-Betancur AL; Pineda-Aguilar N; Galindo-Rodríguez SA; Franco-Molina MA; Hernández-Martínez SP; Rodríguez-Padilla C
    J Biomater Appl; 2019 May; 33(10):1314-1326. PubMed ID: 30880564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of multifunctional cellulose/TiO
    Ashraf R; Sofi HS; Akram T; Rather HA; Abdal-Hay A; Shabir N; Vasita R; Alrokayan SH; Khan HA; Sheikh FA
    J Biomed Mater Res A; 2020 Apr; 108(4):947-962. PubMed ID: 31894888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites.
    Lv Y; Chen Y; Zheng Y; Li Q; Lei T; Yin P
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112194. PubMed ID: 34749193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.