These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Laccases for biorefinery applications: a critical review on challenges and perspectives. Roth S; Spiess AC Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Ding C; Wang X; Li M Appl Microbiol Biotechnol; 2019 Jul; 103(14):5641-5652. PubMed ID: 31115636 [TBL] [Abstract][Full Text] [Related]
4. The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Moilanen U; Kellock M; Galkin S; Viikari L Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723 [TBL] [Abstract][Full Text] [Related]
5. Pretreatment of Miscanthus with biomass-degrading bacteria for increasing delignification and enzymatic hydrolysability. Guo H; Zhao Y; Chen X; Shao Q; Qin W Microb Biotechnol; 2019 Jul; 12(4):787-798. PubMed ID: 31141846 [TBL] [Abstract][Full Text] [Related]
6. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Habermann E; Dias de Oliveira EA; Contin DR; Delvecchio G; Viciedo DO; de Moraes MA; de Mello Prado R; de Pinho Costa KA; Braga MR; Martinez CA Physiol Plant; 2019 Feb; 165(2):383-402. PubMed ID: 30525220 [TBL] [Abstract][Full Text] [Related]
7. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production. Pandey RK; Chand K; Tewari L J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990 [TBL] [Abstract][Full Text] [Related]
8. Jute sticks biomass delignification through laccase-mediator system for enhanced saccharification and sustainable release of fermentable sugar. Suman SK; Malhotra M; Kurmi AK; Narani A; Bhaskar T; Ghosh S; Jain SL Chemosphere; 2022 Jan; 286(Pt 2):131687. PubMed ID: 34343919 [TBL] [Abstract][Full Text] [Related]
9. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. Malhotra M; Suman SK Environ Sci Pollut Res Int; 2021 Nov; 28(42):58929-58944. PubMed ID: 33712950 [TBL] [Abstract][Full Text] [Related]
10. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass. Ahmad Rizal NFA; Ibrahim MF; Zakaria MR; Kamal Bahrin E; Abd-Aziz S; Hassan MA Molecules; 2018 Apr; 23(4):. PubMed ID: 29614823 [TBL] [Abstract][Full Text] [Related]
12. Process intensification of delignification and enzymatic hydrolysis of delignified cellulosic biomass using various process intensification techniques including cavitation. Nagula KN; Pandit AB Bioresour Technol; 2016 Aug; 213():162-168. PubMed ID: 27090406 [TBL] [Abstract][Full Text] [Related]
13. A green and sustainable approach on statistical optimization of laccase mediated delignification of sugarcane tops for enhanced saccharification. Sherpa KC; Ghangrekar MM; Banerjee R J Environ Manage; 2018 Jul; 217():700-709. PubMed ID: 29654973 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Masran R; Zanirun Z; Bahrin EK; Ibrahim MF; Lai Yee P; Abd-Aziz S Appl Microbiol Biotechnol; 2016 Jun; 100(12):5231-46. PubMed ID: 27115758 [TBL] [Abstract][Full Text] [Related]
15. Laccase-mediated hydrophilization of lignin decreases unproductive enzyme binding but limits subsequent enzymatic hydrolysis at high substrate concentrations. van der Zwan T; Chandra RP; Saddler JN Bioresour Technol; 2019 Nov; 292():121999. PubMed ID: 31446388 [TBL] [Abstract][Full Text] [Related]
16. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase. Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987 [TBL] [Abstract][Full Text] [Related]
17. High-performance of Agaricus blazei fungus for the biological pretreatment of elephant grass. Dal Picolli T; Regalin Aver K; Claudete Fontana R; Camassola M Biotechnol Prog; 2018 Jan; 34(1):42-50. PubMed ID: 28726354 [TBL] [Abstract][Full Text] [Related]
18. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO Mishra V; Jana AK Appl Biochem Biotechnol; 2017 Sep; 183(1):200-217. PubMed ID: 28247310 [TBL] [Abstract][Full Text] [Related]
19. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Chen Z; Reznicek WD; Wan C Bioresour Technol; 2018 Sep; 263():40-48. PubMed ID: 29729540 [TBL] [Abstract][Full Text] [Related]
20. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]