These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34502354)
21. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. Strobel LA; Rath SN; Maier AK; Beier JP; Arkudas A; Greil P; Horch RE; Kneser U J Tissue Eng Regen Med; 2014 Mar; 8(3):176-85. PubMed ID: 22740314 [TBL] [Abstract][Full Text] [Related]
22. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration. Liu B; Gao X; Sun Z; Fang Q; Geng X; Zhang H; Wang G; Dou Y; Hu P; Zhu K; Wang D; Xing J; Liu D; Zhang M; Li R J Mater Sci Mater Med; 2018 Dec; 30(1):4. PubMed ID: 30569403 [TBL] [Abstract][Full Text] [Related]
23. A versatile three-dimensional foam fabrication strategy for soft and hard tissue engineering. Xu C; Bai Y; Yang S; Yang H; Stout DA; Tran PA; Yang L Biomed Mater; 2018 Feb; 13(2):025018. PubMed ID: 29420309 [TBL] [Abstract][Full Text] [Related]
24. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
25. Biphasic calcium phosphate scaffolds with controlled pore size distribution prepared by in-situ foaming. Novotna L; Kucera L; Hampl A; Drdlik D; Cihlar J; Cihlar J Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():363-370. PubMed ID: 30573260 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Eskandari N; Shafiei SS Mol Biotechnol; 2021 Jun; 63(6):477-490. PubMed ID: 33755861 [TBL] [Abstract][Full Text] [Related]
27. Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts. Thuaksuban N; Monmaturapoj N; Luntheng T Biomed Mater Eng; 2018; 29(2):159-176. PubMed ID: 29457591 [TBL] [Abstract][Full Text] [Related]
28. In vitro stability of biphasic calcium phosphate ceramics. Kohri M; Miki K; Waite DE; Nakajima H; Okabe T Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558 [TBL] [Abstract][Full Text] [Related]
29. Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells. Didekhani R; Sohrabi MR; Seyedjafari E; Soleimani M; Hanaee-Ahvaz H Biologicals; 2018 Jul; 54():33-38. PubMed ID: 29871790 [TBL] [Abstract][Full Text] [Related]
30. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243 [TBL] [Abstract][Full Text] [Related]
31. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material. Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082 [TBL] [Abstract][Full Text] [Related]
32. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. Wepener I; Richter W; van Papendorp D; Joubert AM J Mater Sci Mater Med; 2012 Dec; 23(12):3029-40. PubMed ID: 22965382 [TBL] [Abstract][Full Text] [Related]
33. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Tomco M; Petrovova E; Giretova M; Almasiova V; Holovska K; Cigankova V; Jenca A; Jencova J; Jenca A; Boldizar M; Balazs K; Medvecky L Anat Sci Int; 2017 Sep; 92(4):569-580. PubMed ID: 27530127 [TBL] [Abstract][Full Text] [Related]
34. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438 [TBL] [Abstract][Full Text] [Related]
35. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. Badr-Mohammadi MR; Hesaraki S; Zamanian A J Mater Sci Mater Med; 2014 Jan; 25(1):185-97. PubMed ID: 24101184 [TBL] [Abstract][Full Text] [Related]
36. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Smith IO; McCabe LR; Baumann MJ Int J Nanomedicine; 2006; 1(2):189-94. PubMed ID: 17722535 [TBL] [Abstract][Full Text] [Related]
37. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. Tang Z; Wang Z; Qing F; Ni Y; Fan Y; Tan Y; Zhang X J Biomed Mater Res A; 2015 Mar; 103(3):1001-10. PubMed ID: 24889783 [TBL] [Abstract][Full Text] [Related]
38. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications. Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280 [TBL] [Abstract][Full Text] [Related]
39. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tang M; Chen W; Liu J; Weir MD; Cheng L; Xu HH Tissue Eng Part A; 2014 Apr; 20(7-8):1295-305. PubMed ID: 24279868 [TBL] [Abstract][Full Text] [Related]
40. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect. Kim JH; Linh NT; Min YK; Lee BT J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]