BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34502519)

  • 1. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function.
    Gerasimov E; Erofeev A; Borodinova A; Bolshakova A; Balaban P; Bezprozvanny I; Vlasova OL
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional regulation by "star forces": Ionotropic astrocyte's optical stimulation suppresses synaptic plasticity, metabotropic one strikes back.
    Maltsev A; Roshchin M; Bezprozvanny I; Smirnov I; Vlasova O; Balaban P; Borodinova A
    Hippocampus; 2023 Jan; 33(1):18-36. PubMed ID: 36484471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.
    Berlinguer-Palmini R; Narducci R; Merhan K; Dilaghi A; Moroni F; Masi A; Scartabelli T; Landucci E; Sili M; Schettini A; McGovern B; Maskaant P; Degenaar P; Mannaioni G
    PLoS One; 2014; 9(9):e108689. PubMed ID: 25265500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus.
    Wang Y; Fu WY; Cheung K; Hung KW; Chen C; Geng H; Yung WH; Qu JY; Fu AKY; Ip NY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin for precise optogenetic activation of astrocyte-neuron networks.
    Mederos S; Hernández-Vivanco A; Ramírez-Franco J; Martín-Fernández M; Navarrete M; Yang A; Boyden ES; Perea G
    Glia; 2019 May; 67(5):915-934. PubMed ID: 30632636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus.
    Khan MT; Deussing J; Tang Y; Illes P
    Brain Res Bull; 2019 Sep; 151():164-173. PubMed ID: 30098388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving high-frequency optical control of synaptic transmission.
    Jackman SL; Beneduce BM; Drew IR; Regehr WG
    J Neurosci; 2014 May; 34(22):7704-14. PubMed ID: 24872574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 10. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.
    Ryu J; Vincent PFY; Ziogas NK; Xu L; Sadeghpour S; Curtin J; Alexandris AS; Stewart N; Sima R; du Lac S; Glowatzki E; Koliatsos VE
    PLoS One; 2019; 14(11):e0224846. PubMed ID: 31710637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice.
    Ding L; Balsamo G; Chen H; Blanco-Hernandez E; Zouridis IS; Naumann R; Preston-Ferrer P; Burgalossi A
    Elife; 2022 Jan; 11():. PubMed ID: 35080491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation.
    Richardson RT; Thompson AC; Wise AK; Ajay EA; Gunewardene N; O'Leary SJ; Stoddart PR; Fallon JB
    Sci Rep; 2021 May; 11(1):11229. PubMed ID: 34045604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optoα1AR activation in astrocytes modulates basal hippocampal synaptic excitation and inhibition in a stimulation-specific manner.
    Courtney CD; Sobieski C; Ramakrishnan C; Ingram RJ; Wojnowski NM; DeFazio RA; Deisseroth K; Christian-Hinman CA
    Hippocampus; 2023 Dec; 33(12):1277-1291. PubMed ID: 37767862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons.
    Tan Z; Liu Y; Xi W; Lou HF; Zhu L; Guo Z; Mei L; Duan S
    Nat Commun; 2017 Jan; 8():13772. PubMed ID: 28128211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astrocytic control of synaptic NMDA receptors.
    Lee CJ; Mannaioni G; Yuan H; Woo DH; Gingrich MB; Traynelis SF
    J Physiol; 2007 Jun; 581(Pt 3):1057-81. PubMed ID: 17412766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.
    Valeeva G; Tressard T; Mukhtarov M; Baude A; Khazipov R
    J Neurosci; 2016 Jun; 36(22):5961-73. PubMed ID: 27251618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of optogenetic actuators in cultured astrocytes.
    Figueiredo M; Lane S; Stout RF; Liu B; Parpura V; Teschemacher AG; Kasparov S
    Cell Calcium; 2014 Sep; 56(3):208-14. PubMed ID: 25109549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytes display complex and localized calcium responses to single-neuron stimulation in the hippocampus.
    Bernardinelli Y; Salmon C; Jones EV; Farmer WT; Stellwagen D; Murai KK
    J Neurosci; 2011 Jun; 31(24):8905-19. PubMed ID: 21677174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.