These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Eto K; Kunishima S Blood; 2016 Mar; 127(10):1234-41. PubMed ID: 26787737 [TBL] [Abstract][Full Text] [Related]
4. Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Kosoff RE; Aslan JE; Kostyak JC; Dulaimi E; Chow HY; Prudnikova TY; Radu M; Kunapuli SP; McCarty OJ; Chernoff J Blood; 2015 May; 125(19):2995-3005. PubMed ID: 25824689 [TBL] [Abstract][Full Text] [Related]
5. Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietin-receptor agonists in patients. Di Buduo CA; Laurent PA; Zaninetti C; Lordier L; Soprano PM; Ntai A; Barozzi S; La Spada A; Biunno I; Raslova H; Bussel JB; Kaplan DL; Balduini CL; Pecci A; Balduini A Elife; 2021 Jun; 10():. PubMed ID: 34059198 [TBL] [Abstract][Full Text] [Related]
6. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Battinelli EM; Hartwig JH; Italiano JE Curr Opin Hematol; 2007 Sep; 14(5):419-26. PubMed ID: 17934346 [TBL] [Abstract][Full Text] [Related]
7. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production. Heazlewood SY; Ahmad T; Mohenska M; Guo BB; Gangatirkar P; Josefsson EC; Ellis SL; Ratnadiwakara M; Cao H; Cao B; Heazlewood CK; Williams B; Fulton M; White JF; Ramialison M; Nilsson SK; Änkö ML Blood; 2022 Mar; 139(9):1359-1373. PubMed ID: 34852174 [TBL] [Abstract][Full Text] [Related]
8. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. Takasaki K; Chou ST Adv Exp Med Biol; 2024; 1459():261-287. PubMed ID: 39017848 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Bury L; Malara A; Momi S; Petito E; Balduini A; Gresele P Haematologica; 2019 Jul; 104(7):1473-1481. PubMed ID: 30655369 [TBL] [Abstract][Full Text] [Related]
11. Metabolic sensor O-GlcNAcylation regulates megakaryopoiesis and thrombopoiesis through c-Myc stabilization and integrin perturbation. Luanpitpong S; Poohadsuan J; Klaihmon P; Kang X; Tangkiettrakul K; Issaragrisil S Stem Cells; 2021 Jun; 39(6):787-802. PubMed ID: 33544938 [TBL] [Abstract][Full Text] [Related]
12. Insights into Regulatory Factors in Megakaryocyte Development and Function: Basic Mechanisms and Potential Targets. Li L; Ni R; Li Z; Ming Y; Liu L; Peng D; Cai Y; Wu Y; Jiang T; Li Y; Liu Y Front Biosci (Landmark Ed); 2022 Nov; 27(11):313. PubMed ID: 36472109 [TBL] [Abstract][Full Text] [Related]
13. Long non-coding RNA NORAD regulates megakaryocyte differentiation and proplatelet formation via the DUSP6/ERK signaling pathway. Wang Y; Lv Y; Jiang X; Yu X; Wang D; Liu D; Liu X; Sun Y Biochem Biophys Res Commun; 2024 Jun; 715():150004. PubMed ID: 38678784 [TBL] [Abstract][Full Text] [Related]
14. Autophagy and its consequences for platelet biology. Schwertz H; Middleton EA Thromb Res; 2023 Nov; 231():170-181. PubMed ID: 36058760 [TBL] [Abstract][Full Text] [Related]
15. β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Giannini S; Lee-Sundlov MM; Rivadeneyra L; Di Buduo CA; Burns R; Lau JT; Falet H; Balduini A; Hoffmeister KM Nat Commun; 2020 Jan; 11(1):356. PubMed ID: 31953383 [TBL] [Abstract][Full Text] [Related]
16. Dynamin 2-dependent endocytosis is required for normal megakaryocyte development in mice. Bender M; Giannini S; Grozovsky R; Jönsson T; Christensen H; Pluthero FG; Ko A; Mullally A; Kahr WH; Hoffmeister KM; Falet H Blood; 2015 Feb; 125(6):1014-24. PubMed ID: 25468568 [TBL] [Abstract][Full Text] [Related]
17. Megakaryocytes from CYCS mutation-associated thrombocytopenia release platelets by both proplatelet-dependent and -independent processes. Ong L; Morison IM; Ledgerwood EC Br J Haematol; 2017 Jan; 176(2):268-279. PubMed ID: 27861742 [TBL] [Abstract][Full Text] [Related]